Discover the most talked about and latest scientific content & concepts.

Concept: Phenylketonuria


BACKGROUND: Severe congenital neutropenia type 4 (SCN4) is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3). Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4) is caused by autosomal recessive mutations in SLC45A2. METHODS: We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. RESULTS: The siblings' phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with “partial OCA” in childhood. CONCLUSIONS: This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.

Concepts: Genetic disorder, Mutation, Allele, Evolution, Phenylketonuria, Zygosity, Albinism, Dominance


Background Whole-exome sequencing is a diagnostic approach for the identification of molecular defects in patients with suspected genetic disorders. Methods We developed technical, bioinformatic, interpretive, and validation pipelines for whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying disease phenotypes in patients. Results We present data on the first 250 probands for whom referring physicians ordered whole-exome sequencing. Patients presented with a range of phenotypes suggesting potential genetic causes. Approximately 80% were children with neurologic phenotypes. Insurance coverage was similar to that for established genetic tests. We identified 86 mutated alleles that were highly likely to be causative in 62 of the 250 patients, achieving a 25% molecular diagnostic rate (95% confidence interval, 20 to 31). Among the 62 patients, 33 had autosomal dominant disease, 16 had autosomal recessive disease, and 9 had X-linked disease. A total of 4 probands received two nonoverlapping molecular diagnoses, which potentially challenged the clinical diagnosis that had been made on the basis of history and physical examination. A total of 83% of the autosomal dominant mutant alleles and 40% of the X-linked mutant alleles occurred de novo. Recurrent clinical phenotypes occurred in patients with mutations that were highly likely to be causative in the same genes and in different genes responsible for genetically heterogeneous disorders. Conclusions Whole-exome sequencing identified the underlying genetic defect in 25% of consecutive patients referred for evaluation of a possible genetic condition. (Funded by the National Human Genome Research Institute.).

Concepts: DNA, Gene, Genetics, Genetic disorder, Mutation, Allele, Gregor Mendel, Phenylketonuria


Mitochondrial dysfunction and altered proteostasis are central features of neurodegenerative diseases. The pitrilysin metallopeptidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests oligopeptides, including the mitochondrial targeting sequences that are cleaved from proteins imported across the inner mitochondrial membrane and the mitochondrial fraction of amyloid beta (Aβ). We identified two siblings carrying a homozygous PITRM1 missense mutation (c.548G>A, p.Arg183Gln) associated with an autosomal recessive, slowly progressive syndrome characterised by mental retardation, spinocerebellar ataxia, cognitive decline and psychosis. The pathogenicity of the mutation was tested in vitro, in mutant fibroblasts and skeletal muscle, and in a yeast model. A Pitrm1(+/-) heterozygous mouse showed progressive ataxia associated with brain degenerative lesions, including accumulation of Aβ-positive amyloid deposits. Our results show that PITRM1 is responsible for significant Aβ degradation and that impairment of its activity results in Aβ accumulation, thus providing a mechanistic demonstration of the mitochondrial involvement in amyloidotic neurodegeneration.

Concepts: Mutation, Metabolism, Mitochondrion, Amyloid, Neurodegenerative disorders, Citric acid cycle, Phenylketonuria, Zygosity


PURPOSE: To assess the mutation spectrum, enzymatic activity, and phenotypic features associated with CYP1B1 genotypes in primary congenital glaucoma (PCG) and nondominant juvenile glaucoma (ndJG). DESIGN: CYP1B1 genotyping, segregation analysis, and functional evaluation of mutations in a cohort of patients. PARTICIPANTS: A total of 177 probands clinically diagnosed with PCG (161) or ndJG (16). METHODS: Automatic DNA sequencing of the promoter (-1 to -867) and the 3 CYP1B1 exons. CYP1B1 enzymatic activity was evaluated using an ethoxyresorufin O-deethylation assay in transfected HEK-293T cells. MAIN OUTCOME MEASURES: Screening and functional evaluation of CYP1B1 mutations. Glaucoma diagnosis based on slit-lamp examination, measurement of intraocular pressure, gonioscopy, and fundus examination. RESULTS: Thirty-one different mutations were identified in 56 PCG and 7 ndJG index cases. To the best of our knowledge, 3 of the identified mutations were novel (-337G>T, F123L, and I399_P400del). Approximately 56% of all mutation carriers were compound heterozygotes, 25% were homozygotes, and both groups inherited glaucoma as an autosomal recessive trait. Nineteen percent of carriers were heterozygotes and showed non-Mendelian segregation. In vitro and inferred functional analysis showed that no less than approximately 74% of the recessive genotypes result in null enzymatic activity. We detected variable expressivity in relation to age of onset and a possible case of incomplete penetrance in 3 of 6 families (50%), with more than 1 affected child or more than 1 subject carrying 2 CYP1B1 mutant alleles. Altogether, these data support that PCG is not a simple monogenic disease. In addition, most patients with PCG carrying null or putative null genotypes showed severe bilateral phenotypes featured by early disease onset, frequently at birth. The mean number of trabeculectomies per eye was significantly higher in carriers than in noncarriers. CONCLUSIONS: This is the largest analysis of CYP1B1 mutations performed in European patients with PCG to date. Our data show that null CYP1B1 genotypes, and therefore complete absence of CYP1B1 activity, frequently lead to severe phenotypes. Our results support that CYP1B1 glaucoma is not a simple monogenic disease and that CYP1B1 activity levels could influence the phenotype. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

Concepts: DNA, Gene, Mutation, Allele, Evolution, Phenylketonuria, Zygosity, Dominance


Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is one of the most common autosomal recessive disorders. In the past, pregnancy was considered to be unlikely for women with CAH, particularly the classical forms. The purpose of this review is to provide current information regarding the pathophysiology of CAH, factors relevant for female and male fertility, and recommendations for management during pregnancy.

Concepts: Endocrinology, Phenylketonuria, Genetic disorders, Congenital adrenal hyperplasia, Congenital adrenal hyperplasia due to 17 alpha-hydroxylase deficiency, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency, Autosomal recessive disorders


Here, we show that the enzymatic cofactor tetrahydrobiopterin (BH4) inhibits feeding in Drosophila. BH4 biosynthesis requires the sequential action of the conserved enzymes Punch, Purple, and Sepiapterin Reductase (Sptr). Although we observe increased feeding upon loss of Punch and Purple in the adult fat body, loss of Sptr must occur in the brain. We found Sptr expression is required in four adult neurons that express neuropeptide F (NPF), the fly homologue of the vertebrate appetite regulator neuropeptide Y (NPY). As expected, feeding flies BH4 rescues the loss of Punch and Purple in the fat body and the loss of Sptr in NPF neurons. Mechanistically, we found BH4 deficiency reduces NPF staining, likely by promoting its release, while excess BH4 increases NPF accumulation without altering its expression. We thus show that, because of its physically distributed biosynthesis, BH4 acts as a fat-derived signal that induces satiety by inhibiting the activity of the NPF neurons.

Concepts: Metabolism, Vitamin, Ribozyme, Phenylketonuria, Cofactor, Neuropeptide Y, Tetrahydrobiopterin, Sepiapterin reductase


The structural basis for allosteric regulation of phenylalanine hydroxylase (PAH), whose dysfunction causes phenylketonuria (PKU), is poorly understood. A new morpheein model for PAH allostery is proposed to consist of a dissociative equilibrium between two architecturally different tetramers whose interconversion requires a ∼90° rotation between the PAH catalytic and regulatory domains, the latter of which contains an ACT domain. This unprecedented model is supported by in vitro data on purified full length rat and human PAH. The conformational change is both predicted to and shown to render the tetramers chromatographically separable using ion exchange methods. One novel aspect of the activated tetramer model is an allosteric phenylalanine binding site at the inter-subunit interface of ACT domains. Amino acid ligand-stabilized ACT domain dimerization follows the multimerization and ligand binding behavior of ACT domains present in other proteins in the PDB. Spectroscopic, chromatographic, and electrophoretic methods demonstrate a PAH equilibrium consisting of two architecturally distinct tetramers as well as dimers. We postulate that PKU-associated mutations may shift the PAH quaternary structure equilibrium in favor of the low activity assemblies. Pharmacological chaperones that stabilize the ACT:ACT interface can potentially provide PKU patients with a novel small molecule therapeutic.

Concepts: Allosteric regulation, Proteins, Protein, Enzyme, Biochemistry, Phenylketonuria, Tyrosine, Phenylalanine hydroxylase


Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene. Mutation screening was carried out in a large cohort of PKU patients from New South Wales, Australia. Pathogenic mutations were identified in 99% of the alleles screened, with the two most common mutations (p.R408W and IVS12+1G>A) accounting for 30.7% of alleles. Most individuals were compound heterozygotes for previously reported mutations, but four novel mutations (c.163+1G>T, c.164-2A>G, c.461A>T [p.Y154F], and c.510-1G>A) and a novel polymorphism (c.60+62C>T) were also identified. A number of patients have been previously tested for their response to dietary supplementation of tetrahydrobiopterin (BH4), the cofactor of PAH. Correlation between genotype and the responses revealed that although genotype is a major determinant of BH4 responsiveness, patients with the same genotype may also show disparate responses to this treatment. A clinical and biochemical evaluation should be undertaken to determine the effectiveness of PKU treatment by supplementation of BH4.

Concepts: DNA, Genetics, Allele, Evolution, Enzyme, Phenylketonuria, Tetrahydrobiopterin, Phenylalanine hydroxylase


Several recessive Mendelian disorders are common in Europeans, including cystic fibrosis (CFTR), medium-chain-acyl-Co-A-dehydrogenase deficiency (ACADM), phenylketonuria (PAH) and alpha 1-antitrypsin deficiency (SERPINA1).

Concepts: Cystic fibrosis, Alpha 1-antitrypsin deficiency, Phenylketonuria, Alpha 1-antitrypsin


The discovery of new genetic determinants of inherited skin disorders has been instrumental to the understanding of epidermal function, differentiation, and renewal. Here, we show that mutations in KDSR (3-ketodihydrosphingosine reductase), encoding an enzyme in the ceramide synthesis pathway, lead to a previously undescribed recessive Mendelian disorder in the progressive symmetric erythrokeratoderma spectrum. This disorder is characterized by severe lesions of thick scaly skin on the face and genitals and thickened, red, and scaly skin on the hands and feet. Although exome sequencing revealed several of the KDSR mutations, we employed genome sequencing to discover a pathogenic 346 kb inversion in multiple probands, and cDNA sequencing and a splicing assay established that two mutations, including a recurrent silent third base change, cause exon skipping. Immunohistochemistry and yeast complementation studies demonstrated that the mutations cause defects in KDSR function. Systemic isotretinoin therapy has achieved nearly complete resolution in the two probands in whom it has been applied, consistent with the effects of retinoic acid on alternative pathways for ceramide generation.

Concepts: DNA, Gene, Genetics, Gene expression, Bacteria, Gregor Mendel, Phenylketonuria, Alternative splicing