Discover the most talked about and latest scientific content & concepts.

Concept: Phase transition


Recently, superconductivity was found on semiconductor surface reconstructions induced by metal adatoms, promising a new field of research where superconductors can be studied from the atomic level.Here we measure the electron transport properties of the Si(111)-(¿7 × ¿3)-In surface near the resistive phase transition and analyze the data in terms of theories of two-dimensional (2D) superconductors.In the normal state, the sheet resistances (2D resistivities) R¿ of the samples decrease significantly between 20 and 5 K, suggesting the importance of the electron-electron scattering in electron transport phenomena.The decrease in R¿ is progressively accelerated just above the transition temperature (Tc) due to the direct (Aslamazov-Larkin term) and the indirect (Maki-Thompson term) superconducting fluctuation effects.A minute but finite resistance tail is found below Tc down to the lowest temperature of 1.8 K, which may be ascribed to a dissipation due to free vortex flow.The present study lays the ground for a future research aiming to find new superconductors in this class of materials.

Concepts: Quantum mechanics, Fundamental physics concepts, Condensed matter physics, Phase transition, Superconductivity, Electrical resistance, Heike Kamerlingh Onnes, History of superconductivity


We have produced a superconducting binary-elements intercalated graphite, CaxSr1-xCy, with the intercalation of Sr and Ca in highly-oriented pyrolytic graphite; the superconducting transition temperature, T c, was ~3 K. The superconducting CaxSr1-xCy sample was fabricated with the nominal x value of 0.8, i.e., Ca0.8Sr0.2Cy. Energy dispersive X-ray (EDX) spectroscopy provided the stoichiometry of Ca0.5(2)Sr0.5(2)Cy for this sample, and the X-ray powder diffraction (XRD) pattern showed that Ca0.5(2)Sr0.5(2)Cy took the SrC6-type hexagonal-structure rather than CaC6-type rhombohedral-structure. Consequently, the chemical formula of CaxSr1-xCy sample could be expressed as ‘Ca0.5(2)Sr0.5(2)C6’. The XRD pattern of Ca0.5(2)Sr0.5(2)C6 was measured at 0-31 GPa, showing that the lattice shrank monotonically with increasing pressure up to 8.6 GPa, with the structural phase transition occurring above 8.6 GPa. The pressure dependence of T c was determined from the DC magnetic susceptibility and resistance up to 15 GPa, which exhibited a positive pressure dependence of T c up to 8.3 GPa, as in YbC6, SrC6, KC8, CaC6 and Ca0.6K0.4C8. The further application of pressure caused the rapid decrease of T c. In this study, the fabrication and superconducting properties of new binary-elements intercalated graphite, CaxSr1-xCy, are fully investigated, and suitable combinations of elements are suggested for binary-elements intercalated graphite.

Concepts: Diffraction, Crystallography, Fundamental physics concepts, Graphite, X-ray crystallography, Phase transition, Superconductivity, X-ray scattering techniques


Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

Concepts: Ice, Force, Viscosity, Phase transition, Glass, Glass transition, X-rays, Small-angle X-ray scattering


Conventional 3D bioprinting allows fabrication of 3D scaffolds for biomedical applications. In this contribution we present a cryogenic 3D printing method able to produce stable 3D structures by utilising the liquid to solid phase change of a composite hydrogel (CH) ink. This is achieved by rapidly cooling the ink solution below its freezing point using solid carbon dioxide (CO2) in an isopropanol bath. The setup was able to successfully create 3D complex geometrical structures, with an average compressive stiffness of O(1) kPa (0.49 ± 0.04 kPa stress at 30% compressive strain) and therefore mimics the mechanical properties of the softest tissues found in the human body (e.g. brain and lung). The method was further validated by showing that the 3D printed material was well matched to the cast-moulded equivalent in terms of mechanical properties and microstructure. A preliminary biological evaluation on the 3D printed material, coated with collagen type I, poly-L-lysine and gelatine, was performed by seeding human dermal fibroblasts. Cells showed good attachment and viability on the collagen-coated 3D printed CH. This greatly widens the range of applications for the cryogenically 3D printed CH structures, from soft tissue phantoms for surgical training and simulations to mechanobiology and tissue engineering.

Concepts: Oxygen, Carbon dioxide, Collagen, Extracellular matrix, Carbon, Phase transition, Inkjet printer, Cryobiology


Tetrahedral interactions describe the behavior of the most abundant and technologically important materials on Earth, such as water, silicon, carbon, germanium, and countless others. Despite their differences, these materials share unique common physical behaviors, such as liquid anomalies, open crystalline structures, and extremely poor glass-forming ability at ambient pressure. To reveal the physical origin of these anomalies and their link to the shape of the phase diagram, we systematically study the properties of the Stillinger-Weber potential as a function of the strength of the tetrahedral interaction [Formula: see text] We uncover a unique transition to a reentrant spinodal line at low values of [Formula: see text], accompanied with a change in the dynamical behavior, from non-Arrhenius to Arrhenius. We then show that a two-state model can provide a comprehensive understanding on how the thermodynamic and dynamic anomalies of this important class of materials depend on the strength of the tetrahedral interaction. Our work establishes a deep link between the shape of the phase diagram and the thermodynamic and dynamic properties through local structural ordering in liquids and hints at why water is so special among all substances.

Concepts: Volume, Structure, Sociology, Silicon, Liquid, Phase, Materials science, Phase transition


Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3% lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism and the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation compounds in general and can help guide the design of better electrodes.

Concepts: Iron, X-ray crystallography, Phase transition, Rechargeable battery, Lithium-ion battery, Lithium iron phosphate battery, Lithium iron phosphate, Valence Technology


A primordial state of matter consisting of free quarks and gluons that existed in the early universe a few microseconds after the Big Bang is also expected to form in high-energy heavy-ion collisions. Determining the equation of state (EoS) of such a primordial matter is the ultimate goal of high-energy heavy-ion experiments. Here we use supervised learning with a deep convolutional neural network to identify the EoS employed in the relativistic hydrodynamic simulations of heavy ion collisions. High-level correlations of particle spectra in transverse momentum and azimuthal angle learned by the network act as an effective EoS-meter in deciphering the nature of the phase transition in quantum chromodynamics. Such EoS-meter is model-independent and insensitive to other simulation inputs including the initial conditions for hydrodynamic simulations.

Concepts: Particle physics, Big Bang, General relativity, Atom, Phase transition, Universe, Standard Model, Quark


The microscopic kinetics of ubiquitous solid-solid phase transitions remain poorly understood. Here, by using single-particle-resolution video microscopy of colloidal films of diameter-tunable microspheres, we show that transitions between square and triangular lattices occur via a two-step diffusive nucleation pathway involving liquid nuclei. The nucleation pathway is favoured over the direct one-step nucleation because the energy of the solid/liquid interface is lower than that between solid phases. We also observed that nucleation precursors are particle-swapping loops rather than newly generated structural defects, and that coherent and incoherent facets of the evolving nuclei exhibit different energies and growth rates that can markedly alter the nucleation kinetics. Our findings suggest that an intermediate liquid should exist in the nucleation processes of solid-solid transitions of most metals and alloys, and provide guidance for better control of the kinetics of the transition and for future refinements of solid-solid transition theory.

Concepts: Iron, Metal, Solid, Surface tension, Phase transition, Supercooling, Spinodal decomposition, Crystal growth


Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy-efficient refrigeration, but only a few materials that suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La(0.7)Ca(0.3)MnO(3) using strain-mediated feedback from BaTiO(3) substrates near a first-order structural phase transition. Our findings should inspire the discovery of giant magnetocaloric effects in a wide range of magnetic materials, and the parallel development of nanostructured bulk samples for practical applications.

Concepts: Magnetic field, Fundamental physics concepts, Magnet, Paramagnetism, Magnetism, Ferromagnetism, Magnetic moment, Phase transition


The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a complex interplay between spin, lattice, and orbital degrees of freedom. The nematic state observed in these compounds epitomizes this complexity, by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice distortion. A subtle and less-explored facet of the interplay between these degrees of freedom arises from the sizable spin-orbit coupling present in these systems, which translates anisotropies in real space into anisotropies in spin space. We present nuclear magnetic resonance studies, which reveal that the magnetic fluctuation spectrum in the paramagnetic phase of BaFe2As2acquires an anisotropic response in spin-space upon application of a tetragonal symmetry-breaking strain field. Our results unveil an internal spin structure of the nematic order parameter, indicating that electronic nematic materials may offer a route to magneto-mechanical control.

Concepts: Fundamental physics concepts, Spin, Condensed matter physics, Nuclear magnetic resonance, Paramagnetism, Ferromagnetism, Phase transition, Superconductivity