Discover the most talked about and latest scientific content & concepts.

Concept: PH


Sitting behaviours have been linked with increased risk of all-cause mortality independent of moderate to vigorous physical activity (MVPA). Previous studies have tended to examine single indicators of sitting or all sitting behaviours combined. This study aims to enhance the evidence base by examining the type-specific prospective associations of four different sitting behaviours as well as total sitting with the risk of all-cause mortality.

Concepts: Epidemiology, PH, Dustin Thomason, Cultural studies, Whitehall Study, Social determinants of health


Animals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475-4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13), markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses.

Concepts: Eating, Food, Stomach, PH, Digestion, Gastric acid, Optimal foraging theory, Foraging


Agricultural soils represent the main source of anthropogenic N2O emissions. Recently, interactions of black carbon with the nitrogen cycle have been recognized and the use of biochar is being investigated as a means to reduce N2O emissions. However, the mechanisms of reduction remain unclear. Here we demonstrate the significant impact of biochar on denitrification, with a consistent decrease in N2O emissions by 10-90% in 14 different agricultural soils. Using the (15)N gas-flux method we observed a consistent reduction of the N2O/(N2 + N2O) ratio, which demonstrates that biochar facilitates the last step of denitrification. Biochar acid buffer capacity was identified as an important aspect for mitigation that was not primarily caused by a pH shift in soil. We propose the function of biochar as an “electron shuttle” that facilitates the transfer of electrons to soil denitrifying microorganisms, which together with its liming effect would promote the reduction of N2O to N2.

Concepts: Carbon dioxide, Metabolism, Nitrogen, PH, Buffer solution, Bioremediation, Denitrification, Nitrogen cycle


Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O(2) and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO(2)). The O(2) concentration difference between the seawater and the test surface (ΔO(2)) was taken as a measure for the photosynthetic rate. Our results showed that O(2) and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO(2)). The pH at the cell surface decreased during incubations at elevated pCO(2), also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA.

Concepts: Photosynthesis, Oxygen, Carbon dioxide, Coral, PH, Foraminifera, Ocean acidification, Chemical oceanography


Diatoms, the major contributors of the global biogenic silica cycle in modern oceans, account for about 40% of global marine primary productivity. They are an important component of the biological pump in the ocean, and their assemblage can be used as useful climate proxies; it is therefore critical to better understand the changes induced by environmental pH on their physiology, silicification capability and morphology. Here, we show that external pH influences cell growth of the ubiquitous diatom Thalassiosira weissflogii, and modifies intracellular silicic acid and biogenic silica contents per cell. Measurements at the single-cell level reveal that extracellular pH modifications lead to intracellular acidosis. To further understand how variations of the acid-base balance affect silicon metabolism and theca formation, we developed novel imaging techniques to measure the dynamics of valve formation. We demonstrate that the kinetics of valve morphogenesis, at least in the early stages, depends on pH. Analytical modeling results suggest that acidic conditions alter the dynamics of the expansion of the vesicles within which silica polymerization occurs, and probably its internal pH. Morphological analysis of valve patterns reveals that acidification also reduces the dimension of the nanometric pores present on the valves, and concurrently overall valve porosity. Variations in the valve silica network seem to be more correlated to the dynamics and the regulation of the morphogenesis process than the silicon incorporation rate. These multiparametric analyses from single-cell to cell-population levels demonstrate that several higher-level processes are sensitive to the acid-base balance in diatoms, and its regulation is a key factor for the control of pattern formation and silicon metabolism.

Concepts: Developmental biology, Cell wall, PH, Silicon, Acid-base homeostasis, Bicarbonate, Diatom, Silicic acid


The magnetic chitosan nanocomposites have been studied intensively and been used practically in various biomedical and biological applications including enzyme immobilization. However, the loading capacity and the remained activity of immobilized enzyme based on existing approaches are not satisfied. Simpler and more effective immobilization strategies are needed. Here we report a simple catechol modified protocol for preparing a novel catechol-chitosan (CCS)-iron oxide nanoparticles (IONPs) composites carrying adhesive moieties with strong surface affinity. The ω-transaminase (ω-TA) was immobilized onto this magnetic composite via nucleophilic reactions between catechol and ω-TA. Under optimal conditions, 87.5% of the available ω-TA was immobilized on the composite, yielding an enzyme loading capacity as high as 681.7 mg/g. Furthermore, the valuation of enzyme activity showed that ω-TA immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme. Importantly, the immobilized ω-TA retained more than 50% of its initial activity after 15 repeated reaction cycles using magnetic separation and 61.5% of its initial activity after storage at 4°C in phosphate buffered saline (PBS) for 15 days. The results suggested that such adhesive magnetic composites may provide an improved platform technology for bio-macromolecules immobilized.

Concepts: Enzyme, PH, Composite material, Buffer solution, Enzymes, Immobilized enzyme, Epoxy, Composite video


The comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, K(w) = [H(+)]×[OH(-)].We used K(w) [in a reversed way] to calculate the number of undissociated H(2)O molecules required by this equilibrium constant to yield at least one of its daughter ions, H(+) or OH(-) at a given pH. In this way we obtained a formula that relates pH to the minimal volume V(pH) required to provide a physical meaning to K(w), [Formula: see text] (where N(A) is Avogadro’s number). For example, at pH 7 (neutral at 25°C) V(pH) = 16.6 aL. Any deviation from neutral pH results in a larger V(pH) value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H(+) ions at equilibrium, thus the definition of pH based on K(w) is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H(+) ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H(+) ions as a general source for biochemical reactions. Consequences of this finding are discussed.

Concepts: Acid, Chemistry, Atom, Acid dissociation constant, PH, Activity, PH indicator, Equilibrium constant


Increased atmospheric CO2 concentrations lead to decreased pH and carbonate availability in the ocean (Ocean Acidification, OA). Carbon dioxide seeps serve as ‘windows into the future’ to study the ability of marine invertebrates to acclimatise to OA. We studied benthic foraminifera in sediments from shallow volcanic CO2 seeps in Papua New Guinea. Conditions follow a gradient from present day pH/pCO2 to those expected past 2100. We show that foraminiferal densities and diversity declined steeply with increasing pCO2. Foraminifera were almost absent at sites with pH < 7.9 (>700 μatm pCO2). Symbiont-bearing species did not exhibit reduced vulnerability to extinction at <7.9 pH. Non-calcifying taxa declined less steeply along pCO2 gradients, but were also absent in samples at pH < 7.9. Data suggest the possibility of an OA induced ecological extinction of shallow tropical benthic foraminifera by 2100; similar to extinctions observed in the geological past.

Concepts: Carbon dioxide, Carbon, PH, Bicarbonate, Carbonic acid, Volcano, Global warming, Foraminifera


Lactic acidosis is a frequent cause of poor outcome in the intensive care settings. We set up an experimental model of lactic acid infusion in normoxic and normotensive rats to investigate the systemic effects of lactic acidemia per se without the confounding factor of an underlying organic cause of acidosis.

Concepts: Acid, PH, Sepsis, Metabolic acidosis, Bicarbonate, Acidosis, Sodium bicarbonate, Lactic acidosis


This work is aimed to evaluate a method to detect the residual magnetic nanoparticles (MNPs) in animal tissues. Ferric ions released from MNPs through acidification with hydrochloric acid can be measured by complexation with potassium thiocyanate. MNPs in saline could be well detected by this chemical colorimetric method, whereas the detected sensitivity decreased significantly when MNPs were mixed with mouse tissue homogenates. In order to check the MNPs in animal tissues accurately, three improvements have been made. Firstly, proteinase K was used to digest the proteins that might bind with iron, and secondly, ferrosoferric oxide (Fe3O4) was collected by a magnetic field which could capture MNPs and leave the bio-iron in the supernatant. Finally, the collected MNPs were carbonized in the muffle furnace at 420[degree sign]C before acidification to ruin the groups that might bind with ferric ions such as porphyrin. Using this method, MNPs in animal tissues could be well measured while avoiding the disturbance of endogenous iron and iron-binding groups.

Concepts: Magnetic field, Hydrogen, Magnetism, Sodium chloride, PH, Chlorine, Magnetite, Ferric