SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Peroxisome proliferator-activated receptor

218

The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions' microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 10(3) cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories.

Concepts: Crystal, Biochemistry, Peroxisome proliferator-activated receptor, Micro-g environment, Chemistry, Experiment, Crystallization, International Space Station

192

While intermittent hypoxic training (IHT) has been reported to evoke cellular responses via hypoxia inducible factors (HIFs) but without substantial performance benefits in endurance athletes, we hypothesized that repeated sprint training in hypoxia could enhance repeated sprint ability (RSA) performed in normoxia via improved glycolysis and O(2) utilization. 40 trained subjects completed 8 cycling repeated sprint sessions in hypoxia (RSH, 3000 m) or normoxia (RSN, 485 m). Before (Pre-) and after (Post-) training, muscular levels of selected mRNAs were analyzed from resting muscle biopsies and RSA tested until exhaustion (10-s sprint, work-to-rest ratio 1∶2) with muscle perfusion assessed by near-infrared spectroscopy. From Pre- to Post-, the average power output of all sprints in RSA was increased (p<0.01) to the same extent (6% vs 7%, NS) in RSH and in RSN but the number of sprints to exhaustion was increased in RSH (9.4±4.8 vs. 13.0±6.2 sprints, p<0.01) but not in RSN (9.3±4.2 vs. 8.9±3.5). mRNA concentrations of HIF-1α (+55%), carbonic anhydrase III (+35%) and monocarboxylate transporter-4 (+20%) were augmented (p<0.05) whereas mitochondrial transcription factor A (-40%), peroxisome proliferator-activated receptor gamma coactivator 1α (-23%) and monocarboxylate transporter-1 (-36%) were decreased (p<0.01) in RSH only. Besides, the changes in total hemoglobin variations (Δ[tHb]) during sprints throughout RSA test increased to a greater extent (p<0.01) in RSH. Our findings show larger improvement in repeated sprint performance in RSH than in RSN with significant molecular adaptations and larger blood perfusion variations in active muscles.

Concepts: Oxygen, Carbonic anhydrase, Muscular system, Red blood cell, Hemoglobin, Peroxisome proliferator-activated receptor, Muscle, Carbon dioxide

169

Peroxisome proliferator-activated receptor (PPAR) delta is an important regulator of fatty acid (FA) metabolism. Angiopoietin-like 4 (Angptl4), a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL) activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR), PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.

Concepts: Oleic acid, Protein, Glucose, Nuclear receptor, Retinoid X receptor, Muscle, Peroxisome proliferator-activated receptor, Glycogen

149

Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetes animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements.

Concepts: Retinoid X receptor, Pharmacology, Nuclear receptor, Protein, Nutrition, Diabetes mellitus, Blood sugar, Peroxisome proliferator-activated receptor

61

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators.

Concepts: Peroxisome proliferator-activated receptor

50

Alzheimer’s disease (AD) is associated with impaired clearance of β-amyloid (Aβ) from the brain, a process normally facilitated by apolipoprotein E (apoE). ApoE expression is transcriptionally induced through the action of the nuclear receptors peroxisome proliferator-activated receptor gamma and liver X receptors in coordination with retinoid X receptors (RXRs). Oral administration of the RXR agonist bexarotene to a mouse model of AD resulted in enhanced clearance of soluble Aβ within hours in an apoE-dependent manner. Aβ plaque area was reduced more than 50% within just 72 hours. Furthermore, bexarotene stimulated the rapid reversal of cognitive, social, and olfactory deficits and improved neural circuit function. Thus, RXR activation stimulates physiological Aβ clearance mechanisms, resulting in the rapid reversal of a broad range of Aβ-induced deficits.

Concepts: Neuron, Receptor antagonist, Alzheimer's disease, Retinoid X receptor, Brain, Apolipoprotein E, Peroxisome proliferator-activated receptor, Nuclear receptor

36

BACKGROUND: By altering specific developmental signaling pathways that are necessary for fetal lung development, perinatal nicotine exposure affects lung growth and differentiation, resulting in the offsprings' predisposition to childhood asthma; peroxisome proliferator-activated receptor gamma (PPARgamma) agonists can inhibit this effect. However, whether the perinatal nicotine-induced asthma risk is restricted to nicotine-exposed offspring only; whether it can be transmitted to the next generation; and whether PPARgamma agonists would have any effect on this process are not known. METHODS: Time-mated Sprague Dawley rat dams received either placebo or nicotine (1 mg/kg, s.c.), once daily from day 6 of gestation to postnatal day (PND) 21. Following delivery, at PND21, generation 1 (F1) pups were either subjected to pulmonary function tests, or killed to obtain their lungs, tracheas, and gonads to determine the relevant protein markers (mesenchymal contractile proteins), global DNA methylation, histone 3 and 4 acetylation, and for tracheal tension studies. Some F1 animals were used as breeders to generate F2 pups, but without any exposure to nicotine in the F1 pregnancy. At PND21, F2 pups underwent studies similar to those performed on F1 pups. RESULTS: Consistent with the asthma phenotype, nicotine affected lung function in both male and female F1 and F2 offspring (maximal 250% increase in total respiratory system resistance, and 84% maximal decrease in dynamic compliance following methacholine challenge; P <0.01, nicotine versus control; P <0.05, males versus females; and P >0.05, F1 versus F2), but only affected tracheal constriction in males (51% maximal increase in tracheal constriction following acetylcholine challenge, P <0.01, nicotine versus control; P <0.0001, males versus females; P >0.05, F1 versus F2); nicotine also increased the contractile protein content of whole lung (180% increase in fibronectin protein levels, P <0.01, nicotine versus control, and P <0.05, males versus females) and isolated lung fibroblasts (for example, 45% increase in fibronectin protein levels, P <0.05, nicotine versus control), along with decreased PPARgamma expression (30% decrease, P <0.05, nicotine versus control), but only affected contractile proteins in the male trachea (P <0.05, nicotine versus control, and P <0.0001, males versus females). All of the nicotine-induced changes in the lung and gonad DNA methylation and histone 3 and 4 acetylation were normalized by the PPARgamma agonist rosiglitazone except for the histone 4 acetylation in the lung. CONCLUSIONS: Germline epigenetic marks imposed by exposure to nicotine during pregnancy can become permanently programmed and transferred through the germline to subsequent generations, a ground-breaking finding that shifts the current asthma paradigm, opening up many new avenues to explore.

Concepts: Female, Male, Epigenetics, Peroxisome proliferator-activated receptor, Lung, Asthma, Histone, DNA

28

Elafibranor is an agonist of the peroxisome proliferator activated receptor-α (PPARA) and peroxisome proliferator activated receptor-δ (PPARD). Elafibranor improves insulin sensitivity, glucose homeostasis, and lipid metabolism and reduces inflammation. We assessed the safety and efficacy of elafibranor in an international, randomized, double-blind placebo-controlled trial of patients with non-alcoholic steatohepatitis (NASH).

Concepts: Non-alcoholic fatty liver disease, Metabolic syndrome, Metabolism, Peroxisome proliferator-activated receptor, Obesity

28

A new scaffold of hydrazothiazoles has been designed as monoamine oxidase (MAO) inhibitors combining the hydrazine moiety of iproniazid and the thiazole nucleus of glitazones, a class of peroxisome proliferator-activated receptor (PPAR)γ agonists recently co-crystallized with human MAO-B. The resulting derivatives were synthesized and assayed to evaluate their in vitro activity against both the A and B isoforms of hMAO. All compounds were shown to be selective hMAO-B inhibitors with IC(50) values in the low micromolar/high nanomolar range. Such results suggest that the hydrazothiazole scaffold could be considered as an interesting pharmacophore for the future design of new lead compounds as coadjuvants for the treatment of neurodegenerative diseases.

Concepts: Nuclear receptor, Oxidase, Neuroscience, Serotonin, Monoamine oxidase inhibitor, Monoamine oxidase B, Peroxisome proliferator-activated receptor, Monoamine oxidase

28

Anthropogenic endocrine disruptors now contaminate all environments globally, with concomitant deleterious effects across diverse taxa. While most studies on endocrine disruption (ED) have focused on vertebrates, the superimposition of male sexual characteristics in the female dogwhelk, Nucella lapillus (imposex), caused by organotins, provides one of the most clearcut ecological examples of anthropogenically induced ED in aquatic ecosystems. To identify the underpinning mechanisms of imposex for this ‘nonmodel’ species, we combined Roche 454 pyrosequencing with custom oligoarray fabrication inexpensively to both generate gene models and identify those responding to chronic tributyltin (TBT) treatment. The results supported the involvement of steroid, neuroendocrine peptide hormone dysfunction and retinoid mechanisms, but suggested additionally the involvement of putative peroxisome proliferator-activated receptor (PPAR) pathways. Application of rosiglitazone, a well-known vertebrate PPARγ ligand, to dogwhelks induced imposex in the absence of TBT. Thus, while TBT-induced imposex is linked to the induction of many genes and has a complex phenotype, it is likely also to be driven by PPAR-responsive pathways, hitherto not described in invertebrates. Our findings provide further evidence for a common signalling pathway between invertebrate and vertebrate species that has previously been overlooked in the study of endocrine disruption.

Concepts: Endocrinology, Invertebrate, Hormone, Species, Peroxisome proliferator-activated receptor, Vertebrate, Receptor, Dog whelk