SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Peptidyl transferase

174

The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.

Concepts: Protein, Bacteria, Amino acid, Ribosome, Messenger RNA, Protein biosynthesis, Chloramphenicol, Peptidyl transferase

5

The origins and evolution of the ribosome, 3-4 billion years ago, remain imprinted in the biochemistry of extant life and in the structure of the ribosome. Processes of ribosomal RNA (rRNA) expansion can be “observed” by comparing 3D rRNA structures of bacteria (small), yeast (medium), and metazoans (large). rRNA size correlates well with species complexity. Differences in ribosomes across species reveal that rRNA expansion segments have been added to rRNAs without perturbing the preexisting core. Here we show that rRNA growth occurs by a limited number of processes that include inserting a branch helix onto a preexisting trunk helix and elongation of a helix. rRNA expansions can leave distinctive atomic resolution fingerprints, which we call “insertion fingerprints.” Observation of insertion fingerprints in the ribosomal common core allows identification of probable ancestral expansion segments. Conceptually reversing these expansions allows extrapolation backward in time to generate models of primordial ribosomes. The approach presented here provides insight to the structure of pre-last universal common ancestor rRNAs and the subsequent expansions that shaped the peptidyl transferase center and the conserved core. We infer distinct phases of ribosomal evolution through which ribosomal particles evolve, acquiring coding and translocation, and extending and elaborating the exit tunnel.

Concepts: Protein, Gene, Archaea, Bacteria, RNA, Ribosomal RNA, Ribosome, Peptidyl transferase

4

In eukaryotes, accurate protein synthesis relies on a family of translational GTPases that pair with specific decoding factors to decipher the mRNA code on ribosomes. We present structures of the mammalian ribosome engaged with decoding factor⋅GTPase complexes representing intermediates of translation elongation (aminoacyl-tRNA⋅eEF1A), termination (eRF1⋅eRF3), and ribosome rescue (Pelota⋅Hbs1l). Comparative analyses reveal that each decoding factor exploits the plasticity of the ribosomal decoding center to differentially remodel ribosomal proteins and rRNA. This leads to varying degrees of large-scale ribosome movements and implies distinct mechanisms for communicating information from the decoding center to each GTPase. Additional structural snapshots of the translation termination pathway reveal the conformational changes that choreograph the accommodation of decoding factors into the peptidyl transferase center. Our results provide a structural framework for how different states of the mammalian ribosome are selectively recognized by the appropriate decoding factor⋅GTPase complex to ensure translational fidelity.

Concepts: Protein, Cell nucleus, RNA, Ribosome, Messenger RNA, Protein biosynthesis, Translation, Peptidyl transferase

0

A feasible scenario for the emergence of life requires the spontaneous materialization and sustainability of a proto-ribosome that could have catalyzed the formation of the first peptides. Models of proto-ribosomes were derived from the ribosomal PTC region, but the poor prebiotic copying abilities give rise to the question of their mode of replication. Here, complementarity is demonstrated in bacterial ribosomes, between nucleotides that constitute the two halves of the PTC cavity. The complementarity corroborates the dimeric nature of the proto-ribosome and is likely to underlie the symmetry of the PTC region. Furthermore, it indicates a simple and efficient replication mode; the strand of each monomer could have acted as a template for the synthesis of its counterpart, forming a self-replicating ribozyme. This article is protected by copyright. All rights reserved.

Concepts: Gene, Amino acid, RNA, Ribosome, Ribozyme, All rights reserved, Copyright, Peptidyl transferase

0

Bypassing is a recoding event that leads to the translation of two distal open reading frames into a single polypeptide chain. We present the structure of a translating ribosome stalled at the bypassing take-off site of gene 60 of bacteriophage T4. The nascent peptide in the exit tunnel anchors the P-site peptidyl-tRNA(Gly) to the ribosome and locks an inactive conformation of the peptidyl transferase center (PTC). The mRNA forms a short dynamic hairpin in the decoding site. The ribosomal subunits adopt a rolling conformation in which the rotation of the small subunit around its long axis causes the opening of the A-site region. Together, PTC conformation and mRNA structure safeguard against premature termination and read-through of the stop codon and reconfigure the ribosome to a state poised for take-off and sliding along the noncoding mRNA gap.

Concepts: DNA, Protein, Gene, Amino acid, Ribosome, Messenger RNA, Protein biosynthesis, Peptidyl transferase

0

McClary et al. (2017) identify the eukaryotic ribosome as a cellular target of agelastatin A, resolving the long-standing mystery surrounding the cytotoxic natural product’s mechanism of action. Structural and modeling studies further pinpointed the molecule’s binding site to the ribosome peptidyl transferase center, revealing key molecular interactions that drive binding.

Concepts: DNA, Electron, Ribosome, Matter, Atom, Atomic mass unit, Molecular modelling, Peptidyl transferase

0

All proteins are synthesized by the ribosome, a macromolecular complex that accomplishes the life-sustaining tasks of faithfully decoding mRNA and catalyzing peptide bond formation at the peptidyl transferase center (PTC). The ribosome has evolved an exit tunnel to host the elongating new peptide, protect it from proteolytic digestion, and guide its emergence. It is here that the nascent chain begins to fold. This folding process depends on the rate of translation at the PTC. We report here that, besides PTC events, translation kinetics depend on steric constraints on nascent peptide side chains, and that confined movements of cramped side chains within and through the tunnel fine-tune elongation rates.

Concepts: Protein, Amino acid, Metabolism, Ribosome, Peptide bond, Protein biosynthesis, Conformational isomerism, Peptidyl transferase

0

For the most part, contemporary proteins can be traced back to a basic set of a few thousand domain prototypes, many of which were already established in the Last Universal Common Ancestor of life on Earth, around 3.5 billion years ago. The origin of these domain prototypes, however, remains poorly understood. One hypothesis posits that they arose from an ancestral set of peptides, which acted as cofactors of RNA-mediated catalysis and replication. Initially, these peptides were entirely dependent on the RNA scaffold for their structure, but as their complexity increased, they became able to form structures by excluding water through hydrophobic contacts, making them independent of the RNA scaffold. Their ability to fold was thus an emergent property of peptide-RNA coevolution. The ribosome is the main survivor of this primordial RNA world and offers an excellent model system for retracing the steps that led to the folded proteins of today, due to its very slow rate of change. Close to the peptidyl transferase center, which is the oldest part of the ribosome, proteins are extended and largely devoid of secondary structure; further from the center, their secondary structure content increases and supersecondary topologies become common, although the proteins still largely lack a hydrophobic core; at the ribosomal periphery, supersecondary structures coalesce around hydrophobic cores, forming folds that resemble those seen in proteins of the cytosol. Collectively, ribosomal proteins thus offer a window onto the time when proteins were acquiring the ability to fold.

Concepts: Protein, Gene, Cell nucleus, Amino acid, RNA, Ribosome, Ribozyme, Peptidyl transferase

0

Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se. Additionally, we found that the same compound is a strong inhibitor of green fluorescent protein synthesis in a coupled in vitro transcription-translation assay as well as a potent inhibitor of lysine polymerization in a poly(A)-programmed ribosome, showing that an additional inhibitory effect may exist. Since chemical protection data supported the interaction of the antibiotic with bases A2058 and A2059 near the entrance of the tunnel, we concluded that the extra inhibition effect on the synthesis of longer peptides is coming from interactions of the peptide moiety of the drug with residues comprising the ribosomal tunnel, and by filling up the tunnel and blocking nascent chain progression through the restricted tunnel. Therefore, the dual interaction of the chloramphenicol peptide with the ribosome increases its inhibitory effect and opens a new window for improving the antimicrobial potency of classical antibiotics or designing new ones.

Concepts: Protein, Amino acid, Ribosome, Peptide, In-gel digestion, Peptide synthesis, Peptidyl transferase

0

A major gap in our understanding of ribosome assembly is knowing the precise function of each of the ∼200 assembly factors. The steps in subunit assembly in which these factors participate have been examined for the most part by depleting each protein from cells. Depletion of the assembly factor Erb1 prevents stable assembly of seven other interdependent assembly factors with pre-60S subunits, resulting in turnover of early preribosomes, before the ITS1 spacer can be removed from 27SA3 pre-rRNA. To investigate more specific functions of Erb1, we constructed eight internal deletions of 40-60 amino acid residues each, spanning the amino-terminal half of Erb1. The erb1Δ161-200 and erb1Δ201-245 deletion mutations block a later step than depletion of Erb1, namely cleavage of the C2 site that initiates removal of the ITS2 spacer. Two other remodeling events fail to occur in these erb1 mutants: association of twelve different assembly factors with domain V of 25S rRNA, including the neighborhood surrounding the peptidyl transferase center, and stable association of ribosomal proteins with rRNA surrounding the polypeptide exit tunnel. This suggests that successful initiation of construction of these functional centers is a checkpoint for committing to spacer removal.

Concepts: Protein, Archaea, Amino acid, RNA, Ribosomal RNA, Ribosome, Transfer RNA, Peptidyl transferase