Discover the most talked about and latest scientific content & concepts.

Concept: Pedagogy


We have previously shown that individual differences in educational achievement are highly heritable in the early and middle school years in the UK. The objective of the present study was to investigate whether similarly high heritability is found at the end of compulsory education (age 16) for the UK-wide examination, called the General Certificate of Secondary Education (GCSE). In a national twin sample of 11,117 16-year-olds, heritability was substantial for overall GCSE performance for compulsory core subjects (58%) as well as for each of them individually: English (52%), mathematics (55%) and science (58%). In contrast, the overall effects of shared environment, which includes all family and school influences shared by members of twin pairs growing up in the same family and attending the same school, accounts for about 36% of the variance of mean GCSE scores. The significance of these findings is that individual differences in educational achievement at the end of compulsory education are not primarily an index of the quality of teachers or schools: much more of the variance of GCSE scores can be attributed to genetics than to school or family environment. We suggest a model of education that recognizes the important role of genetics. Rather than a passive model of schooling as instruction (instruere, ‘to build in’), we propose an active model of education (educare, ‘to bring out’) in which children create their own educational experiences in part on the basis of their genetic propensities, which supports the trend towards personalized learning.

Concepts: Genetics, Education, High school, College, School, Heritability, Teacher, Pedagogy


Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.

Concepts: Psychology, Education, Educational psychology, Learning, Effect size, Pedagogy, Teaching, Darts


School visits to farms are a positive educational experience but pose risks due to the spread of zoonotic infections. A lesson plan to raise awareness about microbes on the farm and preventative behaviours was developed in response to the Griffin Investigation into the E. coli outbreak associated with Godstone Farm in 2009. This study evaluated the effectiveness of the delivery of the lesson plan in increasing knowledge about the spread of infection on the farm, amongst school students.

Concepts: Bacteria, Understanding, Education, School, Teacher, Pedagogy, Teaching, Lesson plan


Education has not changed from the beginning of recorded history. The problem is that focus has been on schools and teachers and not students. Here is a simple thought experiment with two conditions: 1) 50 teachers are assigned by their teaching quality to randomly composed classes of 20 students, 2) 50 classes of 20 each are composed by selecting the most able students to fill each class in order and teachers are assigned randomly to classes. In condition 1, teaching ability of each teacher and in condition 2, mean ability level of students in each class is correlated with average gain over the course of instruction. Educational gain will be best predicted by student abilities (up to r = 0.95) and much less by teachers' skill (up to r = 0.32). I argue that seemingly immutable education will not change until we fully understand students and particularly human intelligence. Over the last 50 years in developed countries, evidence has accumulated that only about 10% of school achievement can be attributed to schools and teachers while the remaining 90% is due to characteristics associated with students. Teachers account for from 1% to 7% of total variance at every level of education. For students, intelligence accounts for much of the 90% of variance associated with learning gains. This evidence is reviewed.

Concepts: Education, Educational psychology, Learning, School, Student, Teacher, History of education, Pedagogy


How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Commentary, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses.

Concepts: Protein, Amino acid, Education, Educational psychology, University, Academia, Learning, Pedagogy


To explore how, in health professions education (HPE), the concept of critical consciousness has been defined and discussed, and to consider and suggest how critical pedagogy could be applied in practice. This exploration responds to increasing calls in the literature for HPE to foster compassionate care and social consciousness through the social sciences and humanities.

Concepts: Sociology, Linguistics, Anthropology, Social sciences, Humanities, Pedagogy, Critical pedagogy, Critical theory


Across many different contexts, randomized evaluations find that school participation is sensitive to costs: Reducing out-of-pocket costs, merit scholarships, and conditional cash transfers all increase schooling. Addressing child health and providing information on how earnings rise with education can increase schooling even more cost-effectively. However, among those in school, test scores are remarkably low and unresponsive to more-of-the-same inputs, such as hiring additional teachers, buying more textbooks, or providing flexible grants. In contrast, pedagogical reforms that match teaching to students' learning levels are highly cost effective at increasing learning, as are reforms that improve accountability and incentives, such as local hiring of teachers on short-term contracts. Technology could potentially improve pedagogy and accountability. Improving pre- and postprimary education are major future challenges.

Concepts: Costs, Education, Educational psychology, School, Finance, Teacher, History of education, Pedagogy


Building environmental literacy (EL) in children and adolescents is critical to meeting current and emerging environmental challenges worldwide. Although environmental education (EE) efforts have begun to address this need, empirical research holistically evaluating drivers of EL is critical. This study begins to fill this gap with an examination of school-wide EE programs among middle schools in North Carolina, including the use of published EE curricula and time outdoors while controlling for teacher education level and experience, student attributes (age, gender, and ethnicity), and school attributes (socio-economic status, student-teacher ratio, and locale). Our sample included an EE group selected from schools with registered school-wide EE programs, and a control group randomly selected from NC middle schools that were not registered as EE schools. Students were given an EL survey at the beginning and end of the spring 2012 semester. Use of published EE curricula, time outdoors, and having teachers with advanced degrees and mid-level teaching experience (between 3 and 5 years) were positively related with EL whereas minority status (Hispanic and black) was negatively related with EL. Results suggest that school-wide EE programs were not associated with improved EL, but the use of published EE curricula paired with time outdoors represents a strategy that may improve all key components of student EL. Further, investments in teacher development and efforts to maintain enthusiasm for EE among teachers with more than 5 years of experience may help to boost student EL levels. Middle school represents a pivotal time for influencing EL, as improvement was slower among older students. Differences in EL levels based on gender suggest boys and girls may possess complementary skills sets when approaching environmental issues. Our findings suggest ethnicity related disparities in EL levels may be mitigated by time spent in nature, especially among black and Hispanic students.

Concepts: Education, Japan, Middle school, High school, College, School, Teacher, Pedagogy


The availability of reliable evidence for teaching practices after professional development is limited across science, technology, engineering, and mathematics disciplines, making the identification of professional development “best practices” and effective models for change difficult. We aimed to determine the extent to which postdoctoral fellows (i.e., future biology faculty) believed in and implemented evidence-based pedagogies after completion of a 2-yr professional development program, Faculty Institutes for Reforming Science Teaching (FIRST IV). Postdocs (PDs) attended a 2-yr training program during which they completed self-report assessments of their beliefs about teaching and gains in pedagogical knowledge and experience, and they provided copies of class assessments and video recordings of their teaching. The PDs reported greater use of learner-centered compared with teacher-centered strategies. These data were consistent with the results of expert reviews of teaching videos. The majority of PDs (86%) received video ratings that documented active engagement of students and implementation of learner-centered classrooms. Despite practice of higher-level cognition in class sessions, the items used by the PDs on their assessments of learning focused on lower-level cognitive skills. We attributed the high success of the FIRST IV program to our focus on inexperienced teachers, an iterative process of teaching practice and reflection, and development of and teaching a full course.

Concepts: Psychology, Cognition, Educational psychology, Management, Learning, Best practice, Teacher, Pedagogy


The Teaching Games for Understanding (TGfU) and Sport Education (SE) pedagogical models share several objectives and pedagogical processes. Despite this seemingly uncanny relationship, few studies have examined the efficacy of a hybrid TGfU/SE pedagogical model, particularly how a teacher’s utilization of such a model impacts on student motivation. The purpose of the current study was to investigate the effect a hybrid TGfU/SE unit, in comparison to direct instruction, on students' perceptions of various aspects of their motivation to engage in physical education (autonomous motivation, basic psychological needs, enjoyment and intention to be physically active). A crossover design was utilized, using the technique of counterbalancing. One group experienced a hybrid SE/TGfU unit first, followed by a unit of direct instruction. A second group experienced the units in the opposite order. Participants were 55 students. The intervention was conducted over a total of 16 lessons. The hybrid unit was designed according to the characteristics of SE by using seasons, roles, persistent teams, etc. Learning tasks set by the teacher during individual lessons, however, were designed according to the pedagogical principles of TGfU. Student motivation data was generated using validated questionnaires. Results showed that regardless of the order of intervention, the two groups showed significant improvements in autonomy, competence and enjoyment when they were taught using the hybrid model. Instead, in the variables autonomous motivation, relatedness and intention to be physically active there were no significant improvements in one group. These results demonstrate that it is possible to design varied learning situations in which affiliation, leadership and trust are fostered, while tasks are adapted to the characteristics of the students. All this can cause greater autonomous motivation, and consequently, perceived competence in the student, a positive image of the sport to practice, and therefore greater enjoyment and to be physically active.

Concepts: Psychology, Education, Educational psychology, Perception, Student, Teacher, Maslow's hierarchy of needs, Pedagogy