Discover the most talked about and latest scientific content & concepts.

Concept: Path


Traditional fact checking by expert journalists cannot keep up with the enormous volume of information that is now generated online. Computational fact checking may significantly enhance our ability to evaluate the veracity of dubious information. Here we show that the complexities of human fact checking can be approximated quite well by finding the shortest path between concept nodes under properly defined semantic proximity metrics on knowledge graphs. Framed as a network problem this approach is feasible with efficient computational techniques. We evaluate this approach by examining tens of thousands of claims related to history, entertainment, geography, and biographical information using a public knowledge graph extracted from Wikipedia. Statements independently known to be true consistently receive higher support via our method than do false ones. These findings represent a significant step toward scalable computational fact-checking methods that may one day mitigate the spread of harmful misinformation.

Concepts: Truth, Epistemology, Graph theory, Knowledge, Logic, Path, Shortest path problem, Reason


A system is said to be meritocratic if the compensation and power available to individuals is determined by their abilities and merits. A system is topocratic if the compensation and power available to an individual is determined primarily by her position in a network. Here we introduce a model that is perfectly meritocratic for fully connected networks but that becomes topocratic for sparse networks-like the ones in society. In the model, individuals produce and sell content, but also distribute the content produced by others when they belong to the shortest path connecting a buyer and a seller. The production and distribution of content defines two channels of compensation: a meritocratic channel, where individuals are compensated for the content they produce, and a topocratic channel, where individual compensation is based on the number of shortest paths that go through them in the network. We solve the model analytically and show that the distribution of payoffs is meritocratic only if the average degree of the nodes is larger than a root of the total number of nodes. We conclude that, in the light of this model, the sparsity and structure of networks represents a fundamental constraint to the meritocracy of societies.

Concepts: Graph theory, Das Model, Marketing, Path, Shortest path problem, Network theory, Meritocracy, Merit


We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.

Concepts: Scientific method, Pharmacology, Mathematics, Epistemology, Probability, Graph theory, Path, Shortest path problem


Any organism faces sensory and cognitive limitations which may result in maladaptive decisions. Such limitations are prominent in the context of groups where the relevant information at the individual level may not coincide with collective requirements. Here, we study the navigational decisions exhibited by Paratrechina longicornis ants as they cooperatively transport a large food item. These decisions hinge on the perception of individuals which often fails to supply the group with reliable directional information. We find that, to achieve efficient navigation despite partial and even misleading information, these ants employ a locally-blazed trail. This trail significantly deviates from the classical notion of an ant trail: First, instead of systematically marking the full path, ants mark short segments originating at the load. Second, the carrying team constantly loses the guiding trail. We experimentally and theoretically show that the locally-blazed trail optimally and robustly exploits useful knowledge while avoiding the pitfalls of misleading information.

Concepts: Cognition, Navigation, Individual, Path, Ant, Formicinae, Mark, Marking


Increased availability of high-resolution movement data has led to the development of numerous methods for studying changes in animal movement behavior. Path segmentation methods provide basics for detecting movement changes and the behavioral mechanisms driving them. However, available path segmentation methods differ vastly with respect to underlying statistical assumptions and output produced. Consequently, it is currently difficult for researchers new to path segmentation to gain an overview of the different methods, and choose one that is appropriate for their data and research questions. Here, we provide an overview of different methods for segmenting movement paths according to potential changes in underlying behavior. To structure our overview, we outline three broad types of research questions that are commonly addressed through path segmentation: 1) the quantitative description of movement patterns, 2) the detection of significant change-points, and 3) the identification of underlying processes or ‘hidden states’. We discuss advantages and limitations of different approaches for addressing these research questions using path-level movement data, and present general guidelines for choosing methods based on data characteristics and questions. Our overview illustrates the large diversity of available path segmentation approaches, highlights the need for studies that compare the utility of different methods, and identifies opportunities for future developments in path-level data analysis.

Concepts: Scientific method, Psychology, Data, Research, Behavior, Human behavior, Path, Availability


MetaboNetworks is a tool to create custom sub-networks in Matlab using main reaction pairs as defined by the Kyoto Encyclopaedia of Genes and Genomes (KEGG) and can be used to explore transgenomic interactions, for example mammalian and bacterial associations. It calculates the shortest path between a set of metabolites (e.g. biomarkers from a metabonomic study) and plots the connectivity between metabolites as links in a network graph. The resulting graph can be edited and explored interactively. Furthermore, nodes and edges in the graph are linked to the KEGG compound and reaction pair webpages.Availability and Implementation: MetaboNetworks is available from

Concepts: Gene, Genome, Graph theory, Path, Shortest path problem, Graph, Explorer, Network theory


Scopolamine administration may be considered as a psychopharmacological model of Alzheimer’s disease (AD). Here, we studied a group of healthy elderly under scopolamine to test whether it elicits similar changes in brain connectivity as those observed in AD, thereby verifying a possible model of AD impairment. We did it by testing healthy elderly subjects in two experimental conditions: glycopyrrolate (placebo) and scopolamine administration. We then analyzed magnetoencephalographic (MEG) data corresponding to both conditions in resting-state with eyes closed. This analysis was performed in source space by combining a nonlinear frequency band-specific measure of functional connectivity (phase locking value, PLV) with network analysis methods. Under scopolamine, functional connectivity between several brain areas was significantly reduced as compared to placebo, in most frequency bands analyzed. Besides, regarding the two complex network indices studied (clustering and shortest path length), clustering significantly decreased in the alpha band while shortest path length significantly increased also in alpha band both after scopolamine administration. Overall our findings indicate that both PLV and graph analysis are suitable tools to measure brain connectivity changes induced by scopolamine, which causes alterations in brain connectivity apparently similar to those reported in AD.

Concepts: Pharmacology, Medicine, Graph theory, Path, Shortest path problem, Graph, Social network, Network theory


The aim of this study was to explore the achievement of parenthood 8 years after starting IVF, considering multiple pathways to parenthood during and after IVF treatment. Medical data on 6507 couples who began IVF between 2000 and 2002 were obtained from the databases of eight French IVF centres. Information on long-term outcome was available for participants in the 2008-2010 postal survey. Multiple imputation methods were used to account for missing data. Eight years after starting IVF, 71% (95% CI 69 to 74) of treated couples had a child. This included 41% live births after IVF in the IVF centre, 7% live births after another treatment or after IVF in another centre, 12% live births after spontaneous conception and 11% adoptions. This study provides a longitudinal overview of paths to parenthood among couples successfully and unsuccessfully treated by IVF. These results should give hope to infertile couples as seven out of 10 couples finally became parents. However, IVF is not the only path to parenthood, and couples should be informed of the other possible avenues.

Concepts: Pregnancy, Obstetrics, Data analysis, Path, Missing values, Expectation-maximization algorithm, Live birth, Imputation


Researchers have speculated that negative life events are more common in troubled neighborhoods, amplifying adverse effects on health. Using a clustered representative sample of Chicago residents (2001-03; nā€Š=ā€Š3,105) from the Chicago Community Adult Health Survey, we provide the first documentation that negative life events are highly geographically clustered compared to health outcomes. Associations between neighborhood context and negative life events were also found to vary by event type. We then demonstrate the power of a contextualized approach by testing path models in which life events mediate the relation between neighborhood characteristics and health outcomes, including self-rated health, anxiety, and depression. The indirect paths between neighborhood conditions and health through negative life event exposure are highly significant and large compared to the direct paths from neighborhood conditions to health. Our results indicate that neighborhood conditions can have acute as well as chronic effects on health, and that negative life events are a powerful mechanism by which context may influence health.

Concepts: Sample, Biology, Adverse drug reaction, Community, Path, Power, Neighbourhood, Neighborhoods


Transition states and minimum energy paths are essential to understand and predict chemical reactivity. Double-ended methods represent a standard approach for their determination. We introduce a new double-ended method that optimizes reaction paths described by curves. Unlike other methods, our approach optimizes the curve parameters rather than distinct structures along the path. With molecular paths represented as continuous curves, the optimization can benefit from the advantages of an integral-based formulation. We call this approach ReaDuct and demonstrate its applicability for molecular paths parametrized by B-spline curves.

Concepts: Chemical reaction, Molecule, Transition state, Topology, Path, Curve, B-spline