SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Parasitoid

165

Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies.

Concepts: Bacteria, Evolution, Parasitism, Hemiptera, Biological pest control, Parasitoid, Aphididae, Soybean aphid

161

Numerous studies have investigated cospeciation between parasites and their hosts, but there have been few studies concerning parasitoids and insect hosts. The high diversity and host specialization observed in Anicetus species suggest that speciation and adaptive radiation might take place with species diversification in scale insect hosts. Here we examined the evolutionary history of the association between Anicetus species and their scale insect hosts via distance-based and tree-based methods.

Concepts: Evolution, Species, Insect, Speciation, Hemiptera, Ant, Parasitoid, Scale insect

28

SUMMARY Molecular phylogeography has revolutionised our ability to infer past biogeographic events from cross-sectional data on current parasite populations. In ecological parasitology, this approach has been used to address fundamental questions concerning host-parasite co-evolution and geographic patterns of spread, and has raised many technical issues and problems of interpretation. For applied parasitologists, the added complexity inherent in adding population genetic structure to perceived parasite distributions can sometimes seem to cloud rather than clarify approaches to control. In this paper, we use case studies firstly to illustrate the potential extent of cryptic diversity in parasite and parasitoid populations, secondly to consider how anthropogenic influences including movement of domestic animals affect the geographic distribution and host associations of parasite genotypes, and thirdly to explore the applied relevance of these processes to parasites of socio-economic importance. The contribution of phylogeographic approaches to deeper understanding of parasite biology in these cases is assessed. Thus, molecular data on the emerging parasites Angiostrongylus vasorum in dogs and wild canids, and the myiasis-causing flies Lucilia spp. in sheep and Cochliomyia hominovorax in humans, lead to clear implications for control efforts to limit global spread. Broader applications of molecular phylogeography to understanding parasite distributions in an era of rapid global change are also discussed.

Concepts: Genetics, Biology, Parasitism, Parasitoid, Phylogeography, Parasitology, Biogeography, Angiostrongylus vasorum

28

BACKGROUND: The harlequin ladybird, Harmonia axyridis Pallas (Coleoptera: Coccinellidae) is native to central and eastern Asia and was purposely introduced into Europe to control aphids. While it proved to be a good biological control agent, its rapid spread and buildup of large populations made it a nuisance, since it overwinters in homes, emits unpleasant odors, stains fabrics, occasionally bites humans and feeds on apples, pears and grapes. Aside from the above, the ravenous appetite of H. axyridis results in their consumption of harmless native insects, including even other ladybird beetles. A study of the natural enemies of H. axyridis in Denmark revealed the presence of nematodes. The present study describes this nematode parasite and discusses aspects of its development and ecology. METHODS: Adult harlequin ladybird beetles were collected from March to November from four localities in Copenhagen on different plant species. In addition, groups of last-instar larvae and pupae (n = 50) were examined for the presence of nematodes. Living and recently dead nematodes were removed from adult H. axyridis in 0.5% saline solution, the nematodes were then heat killed (at 75 C), fixed in 5% formalin and transferred to glycerin on slides for further examination and measurements. RESULTS: A new species of Allantonematidae (Tylenchida), Parasitylenchus bifurcatus n. sp., is described from adults of the harlequin ladybird, Harmonia axyridis in Denmark. The new species is characterized by a straight stylet lacking basal thickenings, a bursa and a forked tail tip in the vermiform (infective) females and juvenile males. The new species is compared with P. coccinellinae previously described from ladybird beetles in France. Parasitism resulted in depletion of the fat body and partial or complete atrophy of the reproductive organs of the beetles. Infections occurred throughout the year with rates of parasitism reaching up to 35%. The rate increased to 60% when field-collected ladybirds were incubated for 30 days in the laboratory. CONCLUSIONS: The production of subsequent generations within the host with only the fertilized females (not the males) leaving the hosts and the absence of parasitism of the larvae and pupae is an impressive developmental modification of P. bifurcatus. It is proposed that the vermiform (infective) females pass from one adult host to another when the beetles are hibernating or in assemblage groups. Rates of parasitism show that P. bifurcatus could be a significant biological control agent of H. axyridis.

Concepts: Insect, Nematode, Beetle, Parasitoid, Beetles, Aphid, Coccinellidae, Harmonia axyridis

27

Mutualism is a common and important ecological phenomenon characterized by beneficial interaction between two species. Red imported fire ants, Solenopsis invicta Buren, tend honeydew-producing hemipteran insects and reduce the activity of these insects' enemies. Ant-hemipteran interactions frequently exert positive effects on the densities of hemipterans. We tested the hypothesis that ant tending can increase the densities of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), and reduce the densities of the mealybug’s predatory and parasitic enemies, the lady beetle, Menochilus sexmaculata Fabricius (Coleoptera: Coccinellidae), and the parasitoid wasp, Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae). We found that more ants foraged on mealybug-infested hibiscus plants than on mealybug-free plants. The number of foraging ants on plants infested with high densities of mealybugs (62.5 ants per plant) was nearly six times that on mealybug-free plants (10.2 ants per plant). Experiment results showed that ant tending significantly increased the survival of mealybugs: if predatory and parasitic enemies were present, the survival of mealybugs tended by fire ants was higher than that in the absence of tending ants. Furthermore, this tending by fire ants significantly decreased the survival of lady beetle larvae. However, no apparent effect was observed on the survival of parasitoid.

Concepts: Insect, Symbiosis, Beetle, Ant, Hymenoptera, Parasitoid, Aphid, Mutualism

26

Numerous species of gall midges (Diptera: Cecidomyiidae) have been recorded from saltbush (Chenopodiaceae: Atriplex) around the world but only 11 of them belong to the large cecidomyiid genus Asphondylia. Of these, two species were described in the late 19th century from complex bud galls on Atriplex halimus in the Mediterranean Basin. In the present study Asphondylia punica is redescribed, A. conglomerata is synonymized with it, and Asphondylia scopuli is described from Atriplex lanfrancoi, an endemic plant to the Maltese Islands. Descriptions are accompanied by information about the galls and life history of the gall midges, and a review of the parasitic Hymenoptera associated with A. scopuli is provided. Four species of parasitoids were found and attributed to the families Eurytomidae, Pteromalidae, Eupelmidae and Eulophidae, of which the pteromalid Mesopolobus melitensis is described as new.

Concepts: Nematocera, Species, Flies, Parasitoid, Apocrita, Biological pest control agents, Cecidomyiidae, Atriplex

26

This study investigated the effects of ant attendance on the parasitoid community and parasitism of lac insect Kerria yunnanensis aggregations in Yunnan province, China. We manipulated ant attendance to establish three treatments: (1) ant exclusion; (2) low ant attendance by several ant species; and (3) high ant attendance by Crematogaster macaoensis. Five parasitoid species were collected, with two species contributing 82.7 and 13.2% of total abundance respectively. Total parasitoid abundance was lowest in the February sample when K. yunnanensis was in its younger life stage, being significantly lower in the ant exclusion treatment. In April, all three treatments had significantly different parasitoid abundances, being highest in the ant exclusion treatment and the lowest in the high ant attendance treatment. When ants were present, there were strong negative relationships between total parasitoid abundance and ant abundance, with the relationships being dependent upon the ant species composition and abundance. The patterns of total parasitoid abundance were driven by the two most abundant parasitoid species. Parasitoid species richness did not differ among treatments or between sample times, however, multivariate analysis confirmed that overall parasitoid community structure differed significantly among treatments and between sample times, with the high ant attendance treatment differing most from the other two treatments. Interestingly the absence of ants did not result in increased parasitism from four of the five parasitoids. Ants in lac insect farming systems have a clear role for agricultural pest management. A full understanding of the asymmetric abilities of ants to influence parasitoid communities, and affect parasitism of hosts will require further experimental manipulation to assess the relative roles of 1) the abundance of each individual ant species on parasitoid access to hosts, 2) competition among parasitoids, and 3) the interaction between the first two factors.

Concepts: Agriculture, Insect, Parasitism, Ant, Hymenoptera, Parasitoid, Apocrita, Pest

24

The koinobiont parasitoid Halticoptera circulus (Walker) is a potential biological control agent of leafminers, but it has only rarely been collected from the invasive leafminer, Liriomyza trifolii (Burgess), in Japan. To understand why this is the case, parasitism and development of H. circulus in L. trifolii was compared with parasitism and development in two indigenous leafminer species, Liriomyza chinensis Kato and Chromatomyia horticola (Goureau). There was no significant difference in parasitism rates by H. circulus in the three leafminer species and the eggs and larvae successfully developed in L. chinensis and C. horticola. However, H. circulus failed to develop in L. trifolii, where developmental stages were encapsulated by host haemocytes. This parasitoid may be a good agent to control indigenous leafminers such as L. chinensis and C. horticola but is unlikely to be useful for the biological control of the invasive L. trifolii in Japan.

Concepts: Insect, Parasitism, Developmental psychology, Lepidoptera, Biological pest control, Parasitoid, Apocrita, Leaf miner

19

Host manipulation by parasites and parasitoids is a fascinating phenomenon within evolutionary ecology, representing an example of extended phenotypes. To elucidate the mechanism of host manipulation, revealing the origin and function of the invoked actions is essential. Our study focused on the ichneumonid spider ectoparasitoid Reclinervellus nielseni, which turns its host spider (Cyclosa argenteoalba) into a drugged navvy, to modify the web structure into a more persistent cocoon web so that the wasp can pupate safely on this web after the spider’s death. We focused on whether the cocoon web originated from the resting web that an unparasitized spider builds before moulting, by comparing web structures, building behaviour and silk spectral/tensile properties. We found that both resting and cocoon webs have reduced numbers of radii decorated by numerous fibrous threads and specific decorating behaviour was identical, suggesting that the cocoon web in this system has roots in the innate resting web and ecdysteroid-related components may be responsible for the manipulation. We also show that these decorations reflect UV light, possibly to prevent damage by flying web-destroyers such as birds or large insects. Furthermore, the tensile test revealed that the spider is induced to repeat certain behavioural steps in addition to resting web construction so that many more threads are laid down for web reinforcement.

Concepts: Evolution, Insect, Parasitism, Tensile strength, World Wide Web, Web 2.0, Hymenoptera, Parasitoid

12

Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If, however, highly susceptible hosts are absent from the community, the parasitoid population could suffer a dilution effect maintaining a lower parasitoid density. Therefore, both host community structure and host susceptibility will determine infectivity in the field.

Concepts: Algae, Bacteria, Population ecology, Parasitism, Population density, Parasitoid