SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Paracetamol

624

Objective To characterise the determinants, time course, and risks of acute myocardial infarction associated with use of oral non-steroidal anti-inflammatory drugs (NSAIDs).Design Systematic review followed by a one stage bayesian individual patient data meta-analysis.Data sources Studies from Canadian and European healthcare databases.Review methods Eligible studies were sourced from computerised drug prescription or medical databases, conducted in the general or an elderly population, documented acute myocardial infarction as specific outcome, studied selective cyclo-oxygenase-2 inhibitors (including rofecoxib) and traditional NSAIDs, compared risk of acute myocardial infarction in NSAID users with non-users, allowed for time dependent analyses, and minimised effects of confounding and misclassification bias. Exposure and outcomes Drug exposure was modelled as an indicator variable incorporating the specific NSAID, its recency, duration of use, and dose. The outcome measures were the summary adjusted odds ratios of first acute myocardial infarction after study entry for each category of NSAID use at index date (date of acute myocardial infarction for cases, matched date for controls) versus non-use in the preceding year and the posterior probability of acute myocardial infarction.Results A cohort of 446 763 individuals including 61 460 with acute myocardial infarction was acquired. Taking any dose of NSAIDs for one week, one month, or more than a month was associated with an increased risk of myocardial infarction. With use for one to seven days the probability of increased myocardial infarction risk (posterior probability of odds ratio >1.0) was 92% for celecoxib, 97% for ibuprofen, and 99% for diclofenac, naproxen, and rofecoxib. The corresponding odds ratios (95% credible intervals) were 1.24 (0.91 to 1.82) for celecoxib, 1.48 (1.00 to 2.26) for ibuprofen, 1.50 (1.06 to 2.04) for diclofenac, 1.53 (1.07 to 2.33) for naproxen, and 1.58 (1.07 to 2.17) for rofecoxib. Greater risk of myocardial infarction was documented for higher dose of NSAIDs. With use for longer than one month, risks did not appear to exceed those associated with shorter durations.Conclusions All NSAIDs, including naproxen, were found to be associated with an increased risk of acute myocardial infarction. Risk of myocardial infarction with celecoxib was comparable to that of traditional NSAIDS and was lower than for rofecoxib. Risk was greatest during the first month of NSAID use and with higher doses.

Concepts: Cyclooxygenase, Osteoarthritis, Non-steroidal anti-inflammatory drug, Paracetamol, Ibuprofen, Aspirin, Celecoxib, Naproxen

482

352

Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization.

Concepts: Liver, Paracetamol, Hepatocyte, Tight junction protein 1

301

 To investigate the cardiovascular safety of non-steroidal anti-inflammatory drugs (NSAIDs) and estimate the risk of hospital admission for heart failure with use of individual NSAIDs.

Concepts: Hypertension, Glucocorticoid, Non-steroidal anti-inflammatory drug, Anti-inflammatory, Paracetamol, ACE inhibitor

260

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used and have been associated with increased cardiovascular risk. Nonetheless, it remains unknown whether use of NSAIDs is associated with out-of-hospital cardiac arrest (OHCA).

Concepts: Non-steroidal anti-inflammatory drug, Anti-inflammatory, Paracetamol

245

The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.

Concepts: Genome, Chromosome, Fungus, Model organism, Cell cycle, Saccharomyces cerevisiae, Non-steroidal anti-inflammatory drug, Paracetamol

216

194

Nigella sativa (N. sativa) (Family Ranunculaceae) is a widely used medicinal plant throughout the world. It is very popular in various traditional systems of medicine like Unani and Tibb, Ayurveda and Siddha. Seeds and oil have a long history of folklore usage in various systems of medicines and food. The seeds of N. sativa have been widely used in the treatment of different diseases and ailments. In Islamic literature, it is considered as one of the greatest forms of healing medicine. It has been recommended for using on regular basis in Tibb-e-Nabwi (Prophetic Medicine). It has been widely used as antihypertensive, liver tonics, diuretics, digestive, anti-diarrheal, appetite stimulant, analgesics, anti-bacterial and in skin disorders. Extensive studies on N. sativa have been carried out by various researchers and a wide spectrum of its pharmacological actions have been explored which may include antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, bronchodilator, hepato-protective, renal protective, gastro-protective, antioxidant properties, etc. Due to its miraculous power of healing, N. sativa has got the place among the top ranked evidence based herbal medicines. This is also revealed that most of the therapeutic properties of this plant are due to the presence of thymoquinone which is major bioactive component of the essential oil. The present review is an effort to provide a detailed survey of the literature on scientific researches of pharmacognostical characteristics, chemical composition and pharmacological activities of the seeds of this plant.

Concepts: Pharmacology, Medicine, The Canon of Medicine, Ayurveda, Paracetamol, Ranunculaceae, Nigella sativa, Nigella

183

There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress (O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including depression, schizophrenia, bipolar disorder, and Alzheimer’s disease (AD). These may represent new pathways for therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase (COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory ‘braking signals’, including lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-reactive protein, tumor necrosis factor- and interleukin (IL)–6 , but not negative immunoregulatory cytokines, such as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of disorders.

Concepts: Inflammation, Cyclooxygenase, Anti-inflammatory, Paracetamol, Mental disorder, Schizophrenia, Bipolar disorder, Tumor necrosis factor-alpha

180

Acetaminophen (paracetamol) is one of the most common medications used for management of pain in the world. There is lack of consensus about the mechanism of action, and concern about the possibility of adverse effects on reproductive health.

Concepts: Health, Influenza, Cytochrome P450, Paracetamol, Adverse drug reaction, World, Adverse effect