SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Osmanthus

144

The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is responsible for the biosynthesis of many crucial secondary metabolites, such as carotenoids, monoterpenes, plastoquinone, and tocopherols. In this study, we isolated and identified 10 MEP pathway genes in the important aromatic plant sweet osmanthus (Osmanthus fragrans). Multiple sequence alignments revealed that 10 MEP pathway genes shared high identities with other reported proteins. The genes showed distinctive expression profiles in various tissues, or at different flower stages and diel time points. The qRT-PCR results demonstrated that these genes were highly expressed in inflorescences, which suggested a tissue-specific transcript pattern. Our results also showed that OfDXS1, OfDXS2, and OfHDR1 had a clear diurnal oscillation pattern. The isolation and expression analysis provides a strong foundation for further research on the MEP pathway involved in gene function and molecular evolution, and improves our understanding of the molecular mechanism underlying this pathway in plants.

Concepts: Osmanthus, Metabolism, Transcription, Osmanthus fragrans, Molecular biology, Gene, Gene expression, DNA

0

Osmanthus fragrans has been used as folk medicine for thousands of years. The extracts of Osmanthus fragrans flowers were reported to have various bioactivities including free radical scavenging, anti-inflammation, neuroprotection and antitumor effects. However, there is still lack of knowledge about its essential oil.

Concepts: Osmanthus, Radical, DNA, Osmanthus fragrans

0

Microwave-assisted and ultrasound-assisted extraction assays were used to isolate total flavonoids (TF) from Osmanthus fragrans flowers. The effects of the solid-liquid ratio, ethanol concentration, microwave power, microwave extraction time, ultrasonic power and ultrasonic extraction time on the yield of TF were studied. A sequential combination of microwave- and ultrasound-assisted extraction (SC-MUAE) methods was developed, which was subsequently optimized by Box-Behnken design-response surface methodology (BBD-RSM). The interaction effects of the ethanol concentration (40-60%), microwave extraction time (5-7 min), ultrasonic extraction time (8-12 min) and ultrasonic power (210-430 W) on the yield of TF were investigated. The optimum operating parameters for the extraction of TF were determined to be as follows: ethanol concentration (48.15%), microwave extraction time (6.43 min), ultrasonic extraction time (10.09 min) and ultrasonic power (370.9 W). Under these conditions, the extraction yield of TF was 7.86 mg/g.

Concepts: Sequence, Interaction, Osmanthus, Osmanthus fragrans

0

0

The screening of suitable insecticides is a key factor in successfully applying trunk injection technology to ornamental plants. In this study, six chemical pesticides were selected and injected into the trunks of Osmanthus fragrans to control the nettle caterpillar, Latoia lepida (Lepidoptera: Limacodidae), using a no-pressure injection system. The absorption rate of the insecticides, the leaf loss due to insect damage, and the mortality and frass amount of L. lepida larvae were evaluated after 77 and 429 days. The results showed that 4% imidacloprid + carbosulfan and 21% abamectin + imidacloprid + omethoate had the fastest conductivity and were completely absorbed into the trunkswithin14 days; however, the efficiencies of these insecticides in controlling L. lepidawere extremely low. Additionally, the treatment 10% emamectin benzoate + clothianidin and 2.5% emamectin benzoate was almost completely absorbed within 30 days and exhibited a longer duration of insecticide efficiency (>80% mortality) in the upper and lower leaves of the canopy. Treatment with these insecticides also resulted in significantly lower leaf loss and frass amounts. We conclude that emamectin benzoate and emamectin benzoate + clothianidin have a rapid uptake into O. fragrans, and are effective as insecticides over long durations. Hence, they may be a suitable control option for L. lepida in O. fragrans plants.

Concepts: Osmanthus, Parasa lepida, Neonicotinoid, Pesticide, Tree, Insect, Osmanthus fragrans, Insecticide

0

Osmanthus fragrans var. thunbergii (O. fragrans) flower has been consumed as folk medicine for thousands of years. O. fragrans flower extract is a well-characterized phenylethanoid glycoside-rich extract, which has been used as a natural anti-oxidant. The aim of this study was to evaluate the safety of O. fragrans flower phenylethanoid glycoside-rich extract (OFFE).

Concepts: Cultural studies, Osmanthus, Osmanthus fragrans

0

In the present study, we explored the effect of the ethanol extract of Osmanthus fragrans (EOF) on the growth and collagenase activity of Porphyromonas gingivalis (P. gingivalis). We also investigated the capacity of EOF to attenuate P. gingivalis lipopolysaccharide (LPS)-induced inflammatory responses and the possible signalling pathway.

Concepts: Time, Inflammation, Porphyromonas, Attenuation, Osmanthus, Present, Osmanthus fragrans, Porphyromonas gingivalis

0

Objective: Aroma is the core factor in aromatherapy. Sensory evaluation of aromas differed among three sweet osmanthus (Osmanthus fragrans) cultivar groups. The purpose of this study was to investigate the aroma-active compounds responsible for these differences. Methods: Gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (GC-MS) were used to analyze the aroma-active compounds and volatiles of creamy-white (‘Houban Yingui’, HBYG), yellow (‘Liuye Jingui’, LYJG), and orange (‘Gecheng Dangui’, GCDG) cultivars. Results: Seventeen aroma-active compounds were detected among 54 volatiles. trans-β-Ocimene, trans-β-ionone, and linalool, which were major volatiles, were identified as aroma-active, while cis-3-hexenyl butanoate, γ-terpinene, and hexyl butanoate were also aroma-active compounds, although their contents were low. Analysis of the odors was based on the sum of the modified frequency (MF) values of aroma-active compounds in different odor groups. HBYG contained more herb odors, contributed by cis-β-ocimene and trans-β-ocimene, while LYJG had more woody/violet/fruity odors released by trans-β-ionone, α-ionone, and hexyl butanoate. In GCDG, the more floral odors were the result of cis-linalool oxide, trans-linalool oxide, and linalool. Conclusions: Aroma-active compounds were not necessarily only the major volatiles: some volatiles with low content also contributed to aroma. The aroma differences among the three cultivars resulted from variation in the content of different odor groups and in the intensities of aroma-active compounds.

Concepts: Perfume, Flavors, Aroma compound, Osmanthus, Olfaction, Odor, Aromatherapy, Osmanthus fragrans