Discover the most talked about and latest scientific content & concepts.

Concept: Ornithopod


A new styracosternan ornithopod genus and species is here described based on a partial postcranial skeleton and an associated dentary tooth of a single specimen from the Arcillas de Morella Formation (Early Cretaceous, late Barremian) at the Morella locality, (Castellón, Spain). Morelladon beltrani gen. et sp. nov. is diagnosed by eight autapomorphic features. The set of autapomorphies includes: very elongated and vertical neural spines of the dorsal vertebrae, midline keel on ventral surface of the second to fourth sacral vertebrae restricted to the anterior half of the centrum, a posterodorsally inclined medial ridge on the postacetabular process of the ilium that meets its dorsal margin and distal end of the straight ischial shaft laterally expanded, among others. Phylogenetic analyses reveal that the new Iberian form is more closely related to its synchronic and sympatric contemporary European taxa Iguanodon bernissartensis and Mantellisaurus atherfieldensis, known from Western Europe, than to other Early Cretaceous Iberian styracosternans (Delapparentia turolensis and Proa valdearinnoensis). The recognition of Morelladon beltrani gen. et sp. nov. indicates that the Iberian Peninsula was home to a highly diverse medium to large bodied styracosternan assemblage during the Early Cretaceous.

Concepts: Portugal, Europe, Spain, Cretaceous, Dinosaur, Ornithopod, Iguanodon, Mantellisaurus


A new small-bodied ornithopod dinosaur, Diluvicursor pickeringi, gen. et sp. nov., is named from the lower Albian of the Eumeralla Formation in southeastern Australia and helps shed new light on the anatomy and diversity of Gondwanan ornithopods. Comprising an almost complete tail and partial lower right hindlimb, the holotype (NMV P221080) was deposited as a carcass or body-part in a log-filled scour near the base of a deep, high-energy river that incised a faunally rich, substantially forested riverine floodplain within the Australian-Antarctic rift graben. The deposit is termed the ‘Eric the Red West Sandstone.’ The holotype, interpreted as an older juvenile ∼1.2 m in total length, appears to have endured antemortem trauma to the pes. A referred, isolated posterior caudal vertebra (NMV P229456) from the holotype locality, suggests D. pickeringi grew to at least 2.3 m in length. D. pickeringi is characterised by 10 potential autapomorphies, among which dorsoventrally low neural arches and transversely broad caudal ribs on the anterior-most caudal vertebrae are a visually defining combination of features. These features suggest D. pickeringi had robust anterior caudal musculature and strong locomotor abilities. Another isolated anterior caudal vertebra (NMV P228342) from the same deposit, suggests that the fossil assemblage hosts at least two ornithopod taxa. D. pickeringi and two stratigraphically younger, indeterminate Eumeralla Formation ornithopods from Dinosaur Cove, NMV P185992/P185993 and NMV P186047, are closely related. However, the tail of D. pickeringi is far shorter than that of NMV P185992/P185993 and its pes more robust than that of NMV P186047. Preliminary cladistic analysis, utilising three existing datasets, failed to resolve D. pickeringi beyond a large polytomy of Ornithopoda. However, qualitative assessment of shared anatomical features suggest that the Eumeralla Formation ornithopods, South American Anabisetia saldiviai and Gasparinisaura cincosaltensis, Afro-Laurasian dryosaurids and possibly Antarctic Morrosaurus antarcticus share a close phylogenetic progenitor. Future phylogenetic analysis with improved data on Australian ornithopods will help to test these suggested affinities.

Concepts: Phylogenetics, Cladistics, Computational phylogenetics, Vertebra, Cretaceous, Dinosaur, Ornithopod, Anabisetia


Rhabdodontidae is a successful clade of ornithopod dinosaurs, characteristic of Late Cretaceous continental faunas in Europe. A new rhabdodontid from the late Campanian, of southern France, Matheronodon provincialis gen. et sp. nov., is characterized by the extreme enlargement of both its maxillary and dentary teeth, correlated to a drastic reduction in the number of maxillary teeth (4 per generation in MMS/VBN-02-102). The interalveolar septa on the maxilla are alternately present or resorbed ventrally so as to be able to lodge such enlarged teeth. The rhabdodontid dentition and masticatory apparatus were adapted for producing a strict and powerful shearing action, resembling a pair of scissors. With their relatively simple dentition, contrasting with the sophisticated dental batteries in contemporary hadrosaurids, Matheronodon and other rhabdodontids are tentatively interpreted as specialized consumers of tough plant parts rich in sclerenchyma fibers, such as Sabalites and Pandanites.

Concepts: Teeth, Tooth, Cretaceous, Dinosaur, Ornithopod, Rhabdodontidae, Late Cretaceous, Campanian


Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.

Concepts: Plant, Bird, Evolutionary biology, Extinction, Cretaceous, Dinosaur, Ornithopod, Plesiosaur


A new basal hadrosauroid, Koshisaurus katsuyama, from the Lower Cretaceous Kitadani Formation in Fukui, central Japan, is reported. The new taxon is distinguished by an autapomorphy and a unique combination of maxillary, vertebral, pubic and femoral characters. A phylogenetic analysis indicates that Koshisaurus is positioned as a basal member of Hadrosauroidea and is more derived than the contemporaneous Fukuisaurus, which is a non-hadrosauroid hadrosauriform. The presence of the antorbital fossa on the maxilla and at least three subsidiary ridges on the labial side of maxillary tooth crown implies that Koshisaurus was among the most basal hadrosauroids. This discovery indicates a higher diversity of hadrosauroids along the eastern margin of the Asian continent in the Early Cretaceous. 

Concepts: Asia, Cretaceous, Dinosaur, Hadrosaurid, Edmontosaurus, Ornithopod, Fukui Prefecture, Hadrosauroidea


Disarticulated and incomplete remains from a new diminutive ornithopod are described. They come from the Cameros Basin in the north of Spain and were collected from the red clays of the Castrillo de la Reina Formation, ranging from Upper Barremian to Lower Aptian. The new ornithopod described here is slender and one of the smallest ever reported. An up-to-date phylogenetic analysis recovers this taxon as a basal iguanodontian. Its unique combination of characters makes it more derived than slender ornithopods like Hyphilophodon and Gasparinisaura, and bring very interesting insights into the basal iguanodontian phylogeny. Though possessing a minimum of three premaxillary teeth, this taxon also bears an extensor ilio-tibialis groove on the distal part of its femur. Moreover, its dentary and maxillary teeth are unique, remarkably similar to those regarded as having a “rhabdomorphan” affinity. This unknown taxon is suggested to be a stem taxon within Rhabdodontidae, a successful clade of basal iguanodonts from the Late Cretaceous of Europe. The Gondwanan ornithopods share the strongest affinities with this family, and we confirm Muttaburrasaurus as a sister taxon of the Rhabdodontidae within a newly defined clade, the Rhabdodontomorpha.

Concepts: Phylogenetic nomenclature, Phylogenetics, Cladistics, Computational phylogenetics, Cretaceous, Dinosaur, Ornithopod, Iguanodon


Rhabdodontid ornithopod dinosaurs are characteristic elements of Late Cretaceous European vertebrate faunas and were previously collected from lower Campanian to Maastrichtian continental deposits. Phylogenetic analyses have placed rhabdodontids among basal ornithopods as the sister taxon to the clade consisting of Tenontosaurus, Dryosaurus, Camptosaurus, and Iguanodon. Recent studies considered Zalmoxes, the best known representative of the clade, to be significantly smaller than closely related ornithopods such as Tenontosaurus, Camptosaurus, or Rhabdodon, and concluded that it was probably an island dwarf that inhabited the Maastrichtian Haţeg Island.

Concepts: Phylogenetics, Cladistics, Cretaceous, Dinosaur, Ornithopod, Rhabdodontidae, Iguanodon, Maastrichtian


Lanzhousaurus magnidens, a large non-hadrosauriform iguanodontian dinosaur from the Lower Cretaceous Hekou Group of Gansu Province, China has the largest known herbivorous dinosaur teeth. Unlike its hadrosauriform relatives possessing tooth batteries of many small teeth, Lanzhousaurus utilized a small number (14) of very large teeth (~10 cm long) to create a large, continuous surface for mastication. Here we investigate the significance of Lanzhousaurus in the evolutionary history of iguanodontian-hadrosauriform transition by using a combination of stable isotope analysis and CT imagery. We infer that Lanzhousaurus had a rapid rate of tooth enamel elongation or amelogenesis at 0.24 mm/day with dental tissues common to other Iguanodontian dinosaurs. Among ornithopods, high rates of amelogenesis have been previously observed in hadrosaurids, where they have been associated with a sophisticated masticatory apparatus. These data suggest rapid amelogenesis evolved among non-hadrosauriform iguanodontians such as Lanzhousaurus, representing a crucial step that was exapted for the evolution of the hadrosaurian feeding mechanism.

Concepts: Evolution, Teeth, Cretaceous, Isotopes, Dinosaur, Psittacosaurus, Ornithopod, Early Cretaceous


Though the dinosaur Thescelosaurus neglectus was first described in 1913 and is known from the relatively fossiliferous Lance and Hell Creek formations in the Western Interior Basin of North America, the cranial anatomy of this species remains poorly understood. The only cranial material confidently referred to this species are three fragmentary bones preserved with the paratype, hindering attempts to understand the systematic relationships of this taxon within Neornithischia. Here the cranial anatomy of T. neglectus is fully described for the first time based on two specimens that include well-preserved cranial material (NCSM 15728 and TLAM.BA.2014.027.0001). Visual inspection of exposed cranial elements of these specimens is supplemented by detailed CT data from NCSM 15728 that enabled the examination of otherwise unexposed surfaces, facilitating a complete description of the cranial anatomy of this species. The skull of T. neglectus displays a unique combination of plesiomorphic and apomorphic traits. The premaxillary and ‘cheek’ tooth morphologies are relatively derived, though less so than the condition seen in basal iguanodontians, suggesting that the high tooth count present in the premaxillae, maxillae, and dentaries may be related to the extreme elongation of the skull of this species rather than a retention of the plesiomorphic condition. The morphology of the braincase most closely resembles the iguanodontians Dryosaurus and Dysalotosaurus, especially with regard to the morphology of the prootic. One autapomorphic feature is recognized for the first time, along with several additional cranial features that differentiate this species from the closely related and contemporaneous Thescelosaurus assiniboiensis. Published phylogenetic hypotheses of neornithischian dinosaur relationships often differ in the placement of the North American taxon Parksosaurus, with some recovering a close relationship with Thescelosaurus and others with the South American taxon Gasparinisaura, but never both at the same time. The new morphological observations presented herein, combined with re-examination of the holotype of Parksosaurus, suggest that Parksosaurus shares a closer relationship with Thescelosaurus than with Gasparinisaura, and that many of the features previously cited to support a relationship with the latter taxon are either also present in Thescelosaurus, are artifacts of preservation, or are the result of incomplete preparation and inaccurate interpretation of specimens. Additionally, the overall morphology of the skull and lower jaws of both Thescelosaurus and Parksosaurus also closely resemble the Asian taxa Changchunsaurus and Haya, though the interrelationships of these taxa have yet to be tested in a phylogenetic analysis that includes these new morphological data for T. neglectus.

Concepts: Biology, Phylogenetics, Cladistics, North America, Dinosaur, Ornithopod, Hypsilophodont, Thescelosaurus


Understanding ontogenetic and developmental patterns is critical for reconstructing the life history of fossil vertebrates. In dinosaurs, ontogenetic studies have nearly exclusively focused on changes in the cranial and post-cranial skeleton, whereas ontogenetic changes in the endocranium have received little attention. Here, we present digital reconstructions of the brain and inner ear anatomy of two ontogenetic stages of the Jurassic ornithischian dinosaur Dysalotosaurus lettowvorbecki. Results show that the endocranial anatomy underwent considerable changes during growth, including a rostrocaudal elongation of the olfactory apparatus, a reduction in the cephalic and pontine flexure and an increase in cerebellum size. Functional elements, such as the cerebral hemispheres and the inner ear, were already well developed in early ontogenetic stages, indicating a large degree of precociality. The anisotropic pattern of size and shape changes in the endocranium further indicates that ontogenetic trajectories may be controlled by functional and environmental demands in the different growth stages in Dysalotosaurus lettowvorbecki. The occurrence of similar ontogenetic patterns in the endocranial anatomy of derived ornithopod dinosaurs suggests a more widespread distribution of this growth trajectory.

Concepts: Brain, Bird, Cerebral cortex, Ear, Inner ear, Dinosaur, Ornithopod, Ornithischia