Discover the most talked about and latest scientific content & concepts.

Concept: Optimal foraging theory


Animals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475-4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13), markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses.

Concepts: Eating, Food, Stomach, PH, Digestion, Gastric acid, Optimal foraging theory, Foraging


Understanding the mechanisms that drive prey selection is a major challenge in foraging ecology. Most studies of foraging strategies have focused on behavioural costs, and have generally failed to recognize that differences in the quality of prey may be as important to predators as the costs of acquisition. Here, we tested whether there is a relationship between the quality of diets (kJ·g(-1)) consumed by cetaceans in the North Atlantic and their metabolic costs of living as estimated by indicators of muscle performance (mitochondrial density, n = 60, and lipid content, n = 37). We found that the cost of living of 11 cetacean species is tightly coupled with the quality of prey they consume. This relationship between diet quality and cost of living appears to be independent of phylogeny and body size, and runs counter to predictions that stem from the well-known scaling relationships between mass and metabolic rates. Our finding suggests that the quality of prey rather than the sheer quantity of food is a major determinant of foraging strategies employed by predators to meet their specific energy requirements. This predator-specific dependence on food quality appears to reflect the evolution of ecological strategies at a species level, and has implications for risk assessment associated with the consequences of changing the quality and quantities of prey available to top predators in marine ecosystems.

Concepts: Evolution, Metabolism, Predation, Ecology, Optimal foraging theory, Dolphin, Cetacea, Whale


Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies - a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally.

Concepts: Scientific method, Predation, Ecology, Prediction, Optimal foraging theory, Bering Sea, Northern Fur Seal


While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions.

Concepts: Insect, Predation, Lotka–Volterra equation, Drosophila, Optimal foraging theory, Spider, Carnivore, Wolf spider


Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

Concepts: Predation, Penguin, Regime, Antarctica, Optimal foraging theory, Antarctic Peninsula


BACKGROUND: Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple Brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a Brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. METHODOLOGY/PRINCIPAL FINDINGS: We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a Brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. CONCLUSIONS/SIGNIFICANCE: Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of behavioural flexibility at the individual level, adding new empirical evidence about how animals in general, and particularly scavengers, solve the problem of efficiently finding food resources.

Concepts: Psychology, Predation, Food, Menstrual cycle, Optimal foraging theory, Foraging, Behavioral ecology, Eating behaviors


The Barbastelle bat (Barbastella barbastellus) preys almost exclusively on tympanate moths. While foraging, this species alternates between two different signal types. We investigated whether these signals differ in emission direction or source level (SL) as assumed from earlier single microphone recordings. We used two different settings of a 16-microphone array to determine SL and sonar beam direction at various locations in the field. Both types of search signals had low SLs (81 and 82 dB SPL rms re 1 m) as compared to other aerial-hawking bats. These two signal types were emitted in different directions; type 1 signals were directed downward and type 2 signals upward. The angle between beam directions was approximately 70°. Barbastelle bats are able to emit signals through both the mouth and the nostrils. As mouth and nostrils are roughly perpendicular to each other, we conclude that type 1 signals are emitted through the mouth while type 2 signals and approach signals are emitted through the nose. We hypothesize that the “stealth” echolocation system of B. barbastellus is bifunctional. The more upward directed nose signals may be mainly used for search and localization of prey. Their low SL prevents an early detection by eared moths but comes at the expense of a strongly reduced detection range for the environment below the bat. The more downward directed mouth signals may have evolved to compensate for this disadvantage and may be mainly used for spatial orientation. We suggest that the possibly bifunctional echolocation system of B. barbastellus has been adapted to the selective foraging of eared moths and is an excellent example of a sophisticated sensory arms race between predator and prey.

Concepts: Insect, Predation, Ecology, Animal echolocation, Bat, Optimal foraging theory, Sonar


Group foraging provides predators with advantages in over-powering prey larger than themselves or in aggregating small prey for efficient exploitation. For group-living predatory species, cooperative hunting strategies provide inclusive fitness benefits. However, for colonial-breeding predators, the benefit pay-offs of group foraging are less clear due to the potential for intra-specific competition. We used animal-borne cameras to determine the prey types, hunting strategies, and success of little penguins (Eudyptula minor), a small, colonial breeding air-breathing marine predator that has recently been shown to display extensive at-sea foraging associations with conspecifics. Regardless of prey type, little penguins had a higher probability of associating with conspecifics when hunting prey that were aggregated than when prey were solitary. In addition, success was greater when individuals hunted schooling rather than solitary prey. Surprisingly, however, success on schooling prey was similar or greater when individuals hunted on their own than when with conspecifics. These findings suggest individuals may be trading-off the energetic gains of solitary hunting for an increased probability of detecting prey within a spatially and temporally variable prey field by associating with conspecifics.

Concepts: Predation, Hunting, Penguin, Optimal foraging theory, Penguins, Little Penguin, Eudyptula, White-flippered Penguin


The New Caledonian crow is the only non-human animal known to craft hooked tools in the wild, but the ecological benefit of these relatively complex tools remains unknown. Here, we show that crows acquire food several times faster when using hooked rather than non-hooked tools, regardless of tool material, prey type and extraction context. This implies that small changes to tool shape can strongly affect energy-intake rates, highlighting a powerful driver for technological advancement.

Concepts: Optimal foraging theory, Tool, Corvidae, Crow, Corvus, New Caledonian Crow, Tool-using species, The Wild


Flexible foraging strategies, such as prey switching, omnivory and food mixing, are key to surviving in a labile and changing environment. Polar bears (Ursus maritimus) in western Hudson Bay are versatile predators that use all of these strategies as they seasonally exploit resources across trophic levels. Climate warming is reducing availability of their ice habitat, especially in spring when polar bears gain most of their annual fat reserves by consuming seal pups before coming ashore in summer. How polar bears combine these flexible foraging strategies to obtain and utilize terrestrial food will become increasingly important in compensating for energy deficits from lost seal hunting opportunities. We evaluated patterns in the composition of foods in scat to characterize the foraging behaviors that underpin the diet mixing and omnivory observed in polar bears on land in western Hudson Bay. Specifically, we measured diet richness, proportions of plant and animal foods, patterns in co-occurrence of foods, spatial composition and an index of temporal composition.

Concepts: Hunting, Inuit, Pinniped, Optimal foraging theory, Omnivore, Bear, Carnivore, Polar bear