Discover the most talked about and latest scientific content & concepts.

Concept: Optics


We study fifteen months of human mobility data for one and a half million individuals and find that human mobility traces are highly unique. In fact, in a dataset where the location of an individual is specified hourly, and with a spatial resolution equal to that given by the carrier’s antennas, four spatio-temporal points are enough to uniquely identify 95% of the individuals. We coarsen the data spatially and temporally to find a formula for the uniqueness of human mobility traces given their resolution and the available outside information. This formula shows that the uniqueness of mobility traces decays approximately as the 1/10 power of their resolution. Hence, even coarse datasets provide little anonymity. These findings represent fundamental constraints to an individual’s privacy and have important implications for the design of frameworks and institutions dedicated to protect the privacy of individuals.

Concepts: Optics, Law, Data set, First-order logic


Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers.

Concepts: Light, Fundamental physics concepts, Telescope, Diffraction, OSI model, Optics, Layer, Wavelength


Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.

Concepts: Optics, Visual system, Receptive field, Thalamus, Photoreceptor cell, Brain, Retina, Cerebral cortex


Ultrafast video recording of spatiotemporal light distribution in a scattering medium has a significant impact in biomedicine. Although many simulation tools have been implemented to model light propagation in scattering media, existing experimental instruments still lack sufficient imaging speed to record transient light-scattering events in real time. We report single-shot ultrafast video recording of a light-induced photonic Mach cone propagating in an engineered scattering plate assembly. This dynamic light-scattering event was captured in a single camera exposure by lossless-encoding compressed ultrafast photography at 100 billion frames per second. Our experimental results are in excellent agreement with theoretical predictions by time-resolved Monte Carlo simulation. This technology holds great promise for next-generation biomedical imaging instrumentation.

Concepts: Monte Carlo methods in finance, Camera, Simulation, NTSC, Video, Monte Carlo method, Monte Carlo, Optics


Mobile phone microscopes are a natural platform for point-of-care imaging, but current solutions require an externally powered illumination source, thereby adding bulk and cost. We present a mobile phone microscope that uses the internal flash or sunlight as the illumination source, thereby reducing complexity whilst maintaining functionality and performance. The microscope is capable of both brightfield and darkfield imaging modes, enabling microscopic visualisation of samples ranging from plant to mammalian cells. We describe the microscope design principles, assembly process, and demonstrate its imaging capabilities through the visualisation of unlabelled cell nuclei to observing the motility of cattle sperm and zooplankton.

Concepts: Optics, Optical microscope, Light, Cell, Mobile phone, Microscope, Cell nucleus


The goal of this study was to test whether central mechanisms of scratching-induced itch attenuation can be activated by scratching the limb contralateral to the itching limb when the participant is made to visually perceive the non-itching limb as the itching limb by means of mirror images.

Concepts: Mirror, Itch, Optics


We demonstrate a new optical approach to generate high-frequency (>15 MHz) and high-amplitude focused ultrasound, which can be used for non-invasive ultrasound therapy. A nano-composite film of carbon nanotubes (CNTs) and elastomeric polymer is formed on concave lenses, and used as an efficient optoacoustic source due to the high optical absorption of the CNTs and rapid heat transfer to the polymer upon excitation by pulsed laser irradiation. The CNT-coated lenses can generate unprecedented optoacoustic pressures of >50 MPa in peak positive on a tight focal spot of 75 μm in lateral and 400 μm in axial widths. This pressure amplitude is remarkably high in this frequency regime, producing pronounced shock effects and non-thermal pulsed cavitation at the focal zone. We demonstrate that the optoacoustic lens can be used for micro-scale ultrasonic fragmentation of solid materials and a single-cell surgery in terms of removing the cells from substrates and neighboring cells.

Concepts: Photographic lens, Sonar, Electromagnetic radiation, Elastomer, Optics, Ultrasound, Sound, Pressure


Population surveys and species recognition for roosting bats are either based on capture, sight or optical-mechanical count methods. However, these methods are intrusive, are tedious and, at best, provide only statistical estimations. Here, we demonstrated the successful use of a terrestrial Light Detection and Ranging (LIDAR) laser scanner for remotely identifying and determining the exact population of roosting bats in caves. LIDAR accurately captured the 3D features of the roosting bats and their spatial distribution patterns in minimal light. The high-resolution model of the cave enabled an exact count of the visibly differentiated Hipposideros larvatus and their roosting pattern within the 3D topology of the cave. We anticipate that the development of LIDAR will open up new research possibilities by allowing researchers to study roosting behaviour within the topographical context of a cave’s internal surface, thus facilitating rigorous quantitative characterisations of cave roosting behaviour.

Concepts: Cave, 3D scanner, Light, Mathematics, Bathymetry, LIDAR, Optics, Laser


Multiple scattering limits the contrast in optical imaging of thick specimens. Here, we present gradient light interference microscopy (GLIM) to extract three-dimensional information from both thin and thick unlabeled specimens. GLIM exploits a special case of low-coherence interferometry to extract phase information from the specimen, which in turn can be used to measure cell mass, volume, surface area, and their evolutions in time. Because it combines multiple intensity images that correspond to controlled phase shifts between two interfering waves, gradient light interference microscopy is capable of suppressing the incoherent background due to multiple scattering. GLIM can potentially become a valuable tool for in vitro fertilization, where contrast agents and fluorophores may impact the viability of the embryo. Since GLIM is implemented as an add-on module to an existing inverted microscope, we anticipate that it will be adopted rapidly by the biological community.Challenges in biological imaging include labeling, photobleaching and phototoxicity, as well as light scattering. Here, Nguyen et al. develop a quantitative phase method that uses low-coherence interferometry for label-free 3D imaging in scattering tissue.

Concepts: Scattering, Phase, Interference, Biology, Medical imaging, Optics, In vitro fertilisation, Wave


Silicon photonics enables large-scale photonic-electronic integration by leveraging highly developed fabrication processes from the microelectronics industry. However, while a rich portfolio of devices has already been demonstrated on the silicon platform, on-chip light sources still remain a key challenge since the indirect bandgap of the material inhibits efficient photon emission and thus impedes lasing. Here we demonstrate a class of infrared lasers that can be fabricated on the silicon-on-insulator (SOI) integration platform. The lasers are based on the silicon-organic hybrid (SOH) integration concept and combine nanophotonic SOI waveguides with dye-doped organic cladding materials that provide optical gain. We demonstrate pulsed room-temperature lasing with on-chip peak output powers of up to 1.1 W at a wavelength of 1,310 nm. The SOH approach enables efficient mass-production of silicon photonic light sources emitting in the near infrared and offers the possibility of tuning the emission wavelength over a wide range by proper choice of dye materials and resonator geometry.

Concepts: Electromagnetic spectrum, Silicon on insulator, Electromagnetic radiation, Silicon photonics, Light, Optics, Photonics, Laser