Discover the most talked about and latest scientific content & concepts.

Concept: Opisthosoma


Spiders (Araneae) are a hugely successful lineage with a long history. Details of their origins remain obscure, with little knowledge of their stem group and few insights into the sequence of character acquisition during spider evolution. Here, we describe Chimerarachne yingi gen. et sp. nov., a remarkable arachnid from the mid-Cretaceous (approximately 100 million years ago) Burmese amber of Myanmar, which documents a key transition stage in spider evolution. Like uraraneids, the two fossils available retain a segmented opisthosoma bearing a whip-like telson, but also preserve two traditional synapomorphies for Araneae: a male pedipalp modified for sperm transfer and well-defined spinnerets resembling those of modern mesothele spiders. This unique character combination resolves C. yingi within a clade including both Araneae and Uraraneida; however, its exact position relative to these orders is sensitive to different parameters of our phylogenetic analysis. Our new fossil most likely represents the earliest branch of the Araneae, and implies that there was a lineage of tailed spiders that presumably originated in the Palaeozoic and survived at least into the Cretaceous of Southeast Asia.

Concepts: Insect, Phylogenetics, Arachnid, Fossil, Spider, Chelicerata, Pedipalp, Opisthosoma


Females of the feather-legged spider Uloborus plumipes invade, and compete for, each other’s orb webs. In the context of these competitive interactions the question arose how the spiders communicate. Since substrate-borne vibrations are the most important component of the sensory environment of web-building spiders, we investigated vibratory movements that might serve as signals of communication. Three behaviors were found to be associated with female-female contests and to cause propagating vibrations in the spider webs: thread pulling, abdominal trembling, and web shaking. While thread pulling and abdominal trembling were also observed when prey insects were caught in the webs, web shaking occurred only in response to the presence of a competing conspecific. Caused by flexing of the first legs and a vigorous rotary movement of the opisthosoma, web shaking creates a short burst of strong oscillations of the orb web. This behavior always elicited a behavioral reaction by the competitor and may serve as an intraspecific signal in the mutual assessment of competing spiders. We suggest that web shaking communicates resource holding potential in U. plumipes.

Concepts: Insect, Arthropod, Behavior, Human behavior, Communication, Spider, Spider web, Opisthosoma