Discover the most talked about and latest scientific content & concepts.

Concept: Open content


Open access, open data, open source, and other open scholarship practices are growing in popularity and necessity. However, widespread adoption of these practices has not yet been achieved. One reason is that researchers are uncertain about how sharing their work will affect their careers. We review literature demonstrating that open research is associated with increases in citations, media attention, potential collaborators, job opportunities, and funding opportunities. These findings are evidence that open research practices bring significant benefits to researchers relative to more traditional closed practices.

Concepts: Scientific method, Academic publishing, Research, Open source, Open content, Open Notebook Science, Open research, Open Data


Journal policy on research data and code availability is an important part of the ongoing shift toward publishing reproducible computational science. This article extends the literature by studying journal data sharing policies by year (for both 2011 and 2012) for a referent set of 170 journals. We make a further contribution by evaluating code sharing policies, supplemental materials policies, and open access status for these 170 journals for each of 2011 and 2012. We build a predictive model of open data and code policy adoption as a function of impact factor and publisher and find higher impact journals more likely to have open data and code policies and scientific societies more likely to have open data and code policies than commercial publishers. We also find open data policies tend to lead open code policies, and we find no relationship between open data and code policies and either supplemental material policies or open access journal status. Of the journals in this study, 38% had a data policy, 22% had a code policy, and 66% had a supplemental materials policy as of June 2012. This reflects a striking one year increase of 16% in the number of data policies, a 30% increase in code policies, and a 7% increase in the number of supplemental materials policies. We introduce a new dataset to the community that categorizes data and code sharing, supplemental materials, and open access policies in 2011 and 2012 for these 170 journals.

Concepts: Scientific method, Evaluation, Academic publishing, Science, Scientific journal, Publishing, Open source, Open content


Open source drug discovery offers potential for developing new and inexpensive drugs to combat diseases that disproportionally affect the poor. The concept borrows two principle aspects from open source computing (i.e., collaboration and open access) and applies them to pharmaceutical innovation. By opening a project to external contributors, its research capacity may increase significantly. To date there are only a handful of open source R&D projects focusing on neglected diseases. We wanted to learn from these first movers, their successes and failures, in order to generate a better understanding of how a much-discussed theoretical concept works in practice and may be implemented.

Concepts: Scientific method, Pharmacology, Drug, Pharmaceutical drug, Knowledge, Open source, Open content, Concepts


BACKGROUND: Automated image analysis methods are becoming more and more important to extract and quantify image features in microscopy-based biomedical studies and several commercial or open-source tools are available. However, most of the approaches rely on pixel-wise operations, a concept that has limitations when high-level object features and relationships between objects are studied and if user-interactivity on the object-level is desired. RESULTS: In this paper we present an open-source software that facilitates the analysis of content features and object relationships by using objects as basic processing unit instead of individual pixels. Our approach enables also users without programming knowledge to compose “analysis pipelines” that exploit the object-level approach. We demonstrate the design and use of example pipelines for the immunohistochemistry-based cell proliferation quantification in breast cancer and two-photon fluorescence microscopy data about boneosteoclast interaction, which underline the advantages of the object-based concept. CONCLUSIONS: We introduce an open source software system that offers object-based image analysis. The object-based concept allows for a straight-forward development of object-related interactive or fully automated image analysis solutions. The presented software may therefore serve as a basis for various applications in the field of digital image analysis. Virtual Slides The virtual slide(s) for this article can be found here:

Concepts: Logic, Two-photon excitation microscopy, Object, Open source, Free software, Open content, Open-source software, Sun Microsystems


The Internet has transformed scholarly publishing, most notably, by the introduction of open access publishing. Recently, there has been a rise of online journals characterized as ‘predatory’, which actively solicit manuscripts and charge publications fees without providing robust peer review and editorial services. We carried out a cross-sectional comparison of characteristics of potential predatory, legitimate open access, and legitimate subscription-based biomedical journals.

Concepts: Academic publishing, Peer review, Scientific journal, Internet, Open source, Open content, Open access, Preprint


Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identifications results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era.

Concepts: Protein, Bioinformatics, Mass spectrometry, Peptide, Open source, Free software, Open content, Arduino


Hi-C experiments explore the 3D structure of the genome, generating terabases of data to create high-resolution contact maps. Here, we introduce Juicer, an open-source tool for analyzing terabase-scale Hi-C datasets. Juicer allows users without a computational background to transform raw sequence data into normalized contact maps with one click. Juicer produces a hic file containing compressed contact matrices at many resolutions, facilitating visualization and analysis at multiple scales. Structural features, such as loops and domains, are automatically annotated. Juicer is available as open source software at

Concepts: Structure, Analysis, Open source, Free software, Open content, Open-source software, Sun Microsystems, 1-Click


We report the outcomes of BioMed Central’s public consultation on implementing open data-compliant licensing in peer-reviewed open access journals. Respondents (42) to the 2012 consultation were six to one in favor (29 in support; 5 against; 8 abstentions) of changing our authors' default open access copyright license agreement, to introduce the Creative Commons CC0 public domain waiver for data published in BioMed Central’s journals. We summarize the different questions we received in response to the consultation and our responses to them - matters such as citation, plagiarism, patient privacy, and commercial use were raised. In light of the support for open data in our journals we outline our plans to implement, in September 2013, a combined Creative Commons Attribution license for published articles (papers) and Creative Commons CC0 waiver for published data.

Concepts: Academic publishing, Open source, Open content, Creative Commons, Copyleft, Wikipedia, Creative Commons licenses, Creative Commons International


In the social sciences, there is a longstanding tension between data collection methods that facilitate quantification and those that are open to unanticipated information. Advances in technology now enable new, hybrid methods that combine some of the benefits of both approaches. Drawing inspiration from online information aggregation systems like Wikipedia and from traditional survey research, we propose a new class of research instruments called wiki surveys. Just as Wikipedia evolves over time based on contributions from participants, we envision an evolving survey driven by contributions from respondents. We develop three general principles that underlie wiki surveys: they should be greedy, collaborative, and adaptive. Building on these principles, we develop methods for data collection and data analysis for one type of wiki survey, a pairwise wiki survey. Using two proof-of-concept case studies involving our free and open-source website, we show that pairwise wiki surveys can yield insights that would be difficult to obtain with other methods.

Concepts: Scientific method, Science, Quantitative research, Website, Social sciences, Open source, Open content, Creative Commons


Despite the clear demand for open data sharing, its implementation within plant science is still limited. This is, at least in part, because open data-sharing raises several unanswered questions and challenges to current research practices. In this commentary, some of the challenges encountered by plant researchers at the bench when generating, interpreting, and attempting to disseminate their data have been highlighted. The difficulties involved in sharing sequencing, transcriptomics, proteomics, and metabolomics data are reviewed. The benefits and drawbacks of three data-sharing venues currently available to plant scientists are identified and assessed: (i) journal publication; (ii) university repositories; and (iii) community and project-specific databases. It is concluded that community and project-specific databases are the most useful to researchers interested in effective data sharing, since these databases are explicitly created to meet the researchers' needs, support extensive curation, and embody a heightened awareness of what it takes to make data reuseable by others. Such bottom-up and community-driven approaches need to be valued by the research community, supported by publishers, and provided with long-term sustainable support by funding bodies and government. At the same time, these databases need to be linked to generic databases where possible, in order to be discoverable to the majority of researchers and thus promote effective and efficient data sharing. As we look forward to a future that embraces open access to data and publications, it is essential that data policies, data curation, data integration, data infrastructure, and data funding are linked together so as to foster data access and research productivity.

Concepts: Scientific method, Academic publishing, Research, Botany, Bench, Open content, Data management, Open research