SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Ocean

379

Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants.

Concepts: Chemical substance, Mixture, Toxicology, Pollution, Plastic, Chemical compound, Material, Ocean

378

Plastic pollution in the ocean is a global concern; concentrations reach 580,000 pieces per km(2) and production is increasing exponentially. Although a large number of empirical studies provide emerging evidence of impacts to wildlife, there has been little systematic assessment of risk. We performed a spatial risk analysis using predicted debris distributions and ranges for 186 seabird species to model debris exposure. We adjusted the model using published data on plastic ingestion by seabirds. Eighty of 135 (59%) species with studies reported in the literature between 1962 and 2012 had ingested plastic, and, within those studies, on average 29% of individuals had plastic in their gut. Standardizing the data for time and species, we estimate the ingestion rate would reach 90% of individuals if these studies were conducted today. Using these results from the literature, we tuned our risk model and were able to capture 71% of the variation in plastic ingestion based on a model including exposure, time, study method, and body size. We used this tuned model to predict risk across seabird species at the global scale. The highest area of expected impact occurs at the Southern Ocean boundary in the Tasman Sea between Australia and New Zealand, which contrasts with previous work identifying this area as having low anthropogenic pressures and concentrations of marine debris. We predict that plastics ingestion is increasing in seabirds, that it will reach 99% of all species by 2050, and that effective waste management can reduce this threat.

Concepts: Scientific method, Atlantic Ocean, Albatross, Plastic, New Zealand, Pacific Ocean, Ocean, Waste

279

Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.

Concepts: Eating, Ingestion, Ocean

274

Climate change and fisheries are transforming the oceans, but we lack a complete understanding of their ecological impact [1-3]. Environmental degradation can cause maladaptive habitat selection, inducing ecological traps with profound consequences for biodiversity [4-6]. However, whether ecological traps operate in marine systems is unclear [7]. Large marine vertebrates may be vulnerable to ecological traps [6], but their broad-scale movements and complex life histories obscure the population-level consequences of habitat selection [8, 9]. We satellite tracked postnatal dispersal in African penguins (Spheniscus demersus) from eight sites across their breeding range to test whether they have become ecologically trapped in the degraded Benguela ecosystem. Bayesian state-space and habitat models show that penguins traversed thousands of square kilometers to areas of low sea surface temperatures (14.5°C-17.5°C) and high chlorophyll-a (∼11 mg m(-3)). These were once reliable cues for prey-rich waters, but climate change and industrial fishing have depleted forage fish stocks in this system [10, 11]. Juvenile penguin survival is low in populations selecting degraded areas, and Bayesian projection models suggest that breeding numbers are ∼50% lower than if non-impacted habitats were used, revealing the extent and effect of a marine ecological trap for the first time. These cascading impacts of localized forage fish depletion-unobserved in studies on adults-were only elucidated via broad-scale movement and demographic data on juveniles. Our results support suspending fishing when prey biomass drops below critical thresholds [12, 13] and suggest that mitigation of marine ecological traps will require matching conservation action to the scale of ecological processes [14].

Concepts: Biodiversity, Demography, Fish, Ecology, Climate, Ecosystem, Ocean, Sea surface temperature

248

The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.

Concepts: Earth, Atlantic Ocean, Pacific Ocean, Ocean, Arctic Ocean, Arctic, Antarctica, Marine debris

247

Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.

Concepts: Biology, Ocean, Mollusca, Cuttlefish, Chromatophore, Cephalopod, Octopus

230

The linking of North and South America by the Isthmus of Panama had major impacts on global climate, oceanic and atmospheric currents, and biodiversity, yet the timing of this critical event remains contentious. The Isthmus is traditionally understood to have fully closed by ca. 3.5 million years ago (Ma), and this date has been used as a benchmark for oceanographic, climatic, and evolutionary research, but recent evidence suggests a more complex geological formation. Here, we analyze both molecular and fossil data to evaluate the tempo of biotic exchange across the Americas in light of geological evidence. We demonstrate significant waves of dispersal of terrestrial organisms at approximately ca. 20 and 6 Ma and corresponding events separating marine organisms in the Atlantic and Pacific oceans at ca. 23 and 7 Ma. The direction of dispersal and their rates were symmetrical until the last ca. 6 Ma, when northern migration of South American lineages increased significantly. Variability among taxa in their timing of dispersal or vicariance across the Isthmus is not explained by the ecological factors tested in these analyses, including biome type, dispersal ability, and elevation preference. Migration was therefore not generally regulated by intrinsic traits but more likely reflects the presence of emergent terrain several millions of years earlier than commonly assumed. These results indicate that the dramatic biotic turnover associated with the Great American Biotic Interchange was a long and complex process that began as early as the Oligocene-Miocene transition.

Concepts: Biology, Ecology, Earth, Ecosystem, Pacific Ocean, South America, Ocean, Isthmus of Panama

225

The past was a world of giants, with abundant whales in the sea and large animals roaming the land. However, that world came to an end following massive late-Quaternary megafauna extinctions on land and widespread population reductions in great whale populations over the past few centuries. These losses are likely to have had important consequences for broad-scale nutrient cycling, because recent literature suggests that large animals disproportionately drive nutrient movement. We estimate that the capacity of animals to move nutrients away from concentration patches has decreased to about 8% of the preextinction value on land and about 5% of historic values in oceans. For phosphorus (P), a key nutrient, upward movement in the ocean by marine mammals is about 23% of its former capacity (previously about 340 million kg of P per year). Movements by seabirds and anadromous fish provide important transfer of nutrients from the sea to land, totalling ∼150 million kg of P per year globally in the past, a transfer that has declined to less than 4% of this value as a result of the decimation of seabird colonies and anadromous fish populations. We propose that in the past, marine mammals, seabirds, anadromous fish, and terrestrial animals likely formed an interlinked system recycling nutrients from the ocean depths to the continental interiors, with marine mammals moving nutrients from the deep sea to surface waters, seabirds and anadromous fish moving nutrients from the ocean to land, and large animals moving nutrients away from hotspots into the continental interior.

Concepts: Plant, Fish, Ecology, Oceanography, Ocean, Mariana Trench, Whale, Forage fish

206

Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

Concepts: Water, Mediterranean Sea, Atlantic Ocean, Spain, Sea, France, Ocean, Marine debris

199

Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m(-2) within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m(-2) and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

Concepts: Energy, Water, Atlantic Ocean, Ocean, Wind, Wind power, Wind farm, Wind turbine