Discover the most talked about and latest scientific content & concepts.

Concept: Ocean acidification


Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity.

Concepts: Acid, Water, United States, Chemistry, Potassium, Base, Ocean acidification, Alkalinity


Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O(2) and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO(2)). The O(2) concentration difference between the seawater and the test surface (ΔO(2)) was taken as a measure for the photosynthetic rate. Our results showed that O(2) and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO(2)). The pH at the cell surface decreased during incubations at elevated pCO(2), also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA.

Concepts: Photosynthesis, Oxygen, Carbon dioxide, Coral, PH, Foraminifera, Ocean acidification, Chemical oceanography


K-selected species with low rates of sexual recruitment may utilise storage effects where low adult mortality allows a number of individuals to persist through time until a favourable recruitment period occurs. Alternative methods of recruitment may become increasingly important for such species if the availability of favourable conditions for sexual recruitment decline under rising anthropogenic disturbance and climate change. Here, we test the hypotheses that asexual dispersal is an integral life history strategy not only in branching corals, as previously reported, but also in a columnar, ‘K-selected’ coral species, and that its prevalence is driven by the frequency of severe hurricane disturbance. Montastraea annularis is a long-lived major frame-work builder of Caribbean coral reefs but its survival is threatened by the consequences of climate induced disturbance, such as bleaching, ocean acidification and increased prevalence of disease. 700 M. annularis samples from 18 reefs within the Caribbean were genotyped using six polymorphic microsatellite loci. We demonstrate that asexual reproduction occurs at varying frequency across the species-range and significantly contributes to the local abundance of M. annularis, with its contribution increasing in areas with greater hurricane frequency. We tested several competing hypotheses that might explain the observed pattern of genotypic diversity. 64% of the variation in genotypic diversity among the sites was explained by hurricane incidence and reef slope, demonstrating that large-scale disturbances combine with local habitat characteristics to shape the balance between sexual and asexual reproduction in populations of M. annularis.

Concepts: Reproduction, Evolution, Coral, Coral reef, Ecosystem, Asexual reproduction, Ocean acidification, R/K selection theory


Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism’s survival and fitness.

Concepts: Carbon dioxide, Biology, Oceanography, Carbon, PH, Ocean, Foraminifera, Ocean acidification


Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO2, but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO2. Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO2. Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae.

Concepts: Algae, Carbon dioxide, Coral, Coral reef, Scleractinia, Aragonite, Seaweed, Ocean acidification


The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

Concepts: Water, Coral, Coral reef, Scleractinia, Ocean, Great Barrier Reef, Aragonite, Ocean acidification


The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl(-) flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.

Concepts: Psychology, PH, Receptor antagonist, Benzodiazepine, GABAA receptor, Ocean, GABA receptor, Ocean acidification


As anthropogenic CO2 emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to over 20% from 1965 through 2010. We used Random Forest models to examine >20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling.

Concepts: Carbon dioxide, Atlantic Ocean, Ocean, Coccolithophore, Phytoplankton, Global warming, Plankton, Ocean acidification


Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

Concepts: Carbon dioxide, Coral, Coral reef, Carbon, Ocean, Carbonic acid, Aragonite, Ocean acidification


The near-term progression of ocean acidification (OA) is projected to bring about sharp changes in the chemistry of coastal upwelling ecosystems. The distribution of OA exposure across these early-impact systems, however, is highly uncertain and limits our understanding of whether and how spatial management actions can be deployed to ameliorate future impacts. Through a novel coastal OA observing network, we have uncovered a remarkably persistent spatial mosaic in the penetration of acidified waters into ecologically-important nearshore habitats across 1,000 km of the California Current Large Marine Ecosystem. In the most severe exposure hotspots, suboptimal conditions for calcifying organisms encompassed up to 56% of the summer season, and were accompanied by some of the lowest and most variable pH environments known for the surface ocean. Persistent refuge areas were also found, highlighting new opportunities for local adaptation to address the global challenge of OA in productive coastal systems.

Concepts: Oceanography, Knowledge, Ocean, Aquatic ecology, Systems ecology, Marine biology, Ocean acidification, California Current