Discover the most talked about and latest scientific content & concepts.

Concept: Nucleobase


Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessiveTK2mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy.

Concepts: DNA, Adenosine triphosphate, RNA, Nucleoside, Pyrimidine, Nucleobase, Guanine, Thymine


Diamond-anvil cell, pressure-tuning infrared (IR), and Raman microspectroscopic measurements have been undertaken to examine the effects of high pressures up to about 45 kbar on the vibrational spectra of the four DNA bases, adenine, cytosine, guanine, and thymine. Small structural changes were evident for all the four bases, viz., for adenine and cytosine at 28-31 kbar; for guanine at 16-19 kbar; and for thymine at 25-26 kbar. These changes are most likely associated with alterations in the intermolecular hydrogen-bonding interactions. The pressure dependences of the main peaks observed in the IR spectra of the two phases of guanine lie in the -0.07-0.66 (low-pressure phase) and 0.06-0.91 (high-pressure phase) cm(-1)/kbar ranges. Also, in the Raman spectra of this nucleoside base, the dν/dP values range from -0.07-0.31 (low-pressure phase) to 0.08-0.50 (high-pressure phase) cm(-1)/kbar. Similar ranges of dν/dP values were obtained for the other three nucleoside bases.

Concepts: DNA, RNA, Nucleoside, Nucleotide, Adenine, Nucleobase, Guanine, Thymine


DNA and RNA oxidation have been linked to diseases such as cancer, arteriosclerosis, neurodegeneration and diabetes. The prototype base modification studied is the 8-hydroxylation of guanine. DNA integrity is maintained by elaborate repair systems, RNA integrity is less studied but relies mainly on degradation.

Concepts: DNA, Gene, Nucleic acid, PH, Adenine, Nucleobase, Guanine, Cytosine


In this study, a simple, rapid, efficient analytical method was established for the qualification and quantification of 16 nucleosides and nucleobases in Euryale ferox Salisb. by using liquid chromatography coupled with electrospray ionization tandem triple quadrupole mass spectrometry (HPLC-ESI-TQ-MS/MS) in multiple-reaction monitoring (MRM) mode. Ideal separation of 16 target compounds was achieved on Xbridge Amide HILIC column (4.6 × 150 mm, 3.5 μm) with gradient elution in 11 min by optimized conditions. Variations of nucleosides and nucleobase in samples from different cultivation regions ranging from 190.50 to 1594.30 μg/g were obvious. The total nucleoside contents were higher than total nucleobases, especially in the compositions of guanosine, cytidine and 2'-deoxyguanosine. Samples 1-18 with dense thorns were better characters than samples 19-26 without thorns in terms of nucleosides and nucleobases concentrations in general. The limits of detection (LODs) and quantification (LOQs) for 16 analytical substances were investigated to be 0.11-6.33 ng/mL and 0.35-21.1 ng/mL, respectively. And the method was first applied to large aquatic plants with good linearity, precision, repeatability and accuracy. All present information provided a scientific and rational reference for quality assessment and control of Euryale ferox Salisb.

Concepts: Mass spectrometry, RNA, Analytical chemistry, Nucleoside, Nucleobase, Guanine, Quadrupole mass analyzer, Guanosine


The synthesis and characterization of novel acyclic and cyclic pyridone-based nucleosides and nucleotides is described. In total, seven nucleosides and four nucleotides were synthesized. None of the tested nucleosides showed inhibitory properties against Klenow exo- polymerase and M.MuLV and HIV-1 reverse transcriptases. The nucleotides containing 4-chloro- and 4-bromo-2-pyridone as a nucleobase were accepted by the Klenow fragment, but at the expense of fidelity and extension efficiency.

Concepts: DNA, RNA, Nucleoside, Nucleotide, Adenine, Nucleobase, DNA polymerase I, Polymerase


Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet-dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth’s early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of “targets” for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet-dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago.

Concepts: DNA, RNA, Nucleotide, Adenine, Nucleobase, Dust, Meteorite, Comet


The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules.

Concepts: DNA, Life, RNA, Matter, Chemistry, Adenine, Nucleobase, Guanine


The ability to remotely trigger CRISPR/Cas9 activity would enable new strategies to study cellular events with greater precision and complexity. In this work, we have developed a method to photocage the activity of the guide RNA called “CRISPR-plus” (CRISPR-precise light-mediated unveiling of sgRNAs). The photoactivation capability of our CRISPR-plus method is compatible with the simultaneous targeting of multiple DNA sequences and supports numerous modifications that can enable guide RNA labeling for use in imaging and mechanistic investigations.

Concepts: DNA, Protein, Gene, Bacteria, RNA, RNA interference, Nucleotide, Nucleobase


Expanded genetic systems are most likely to work with natural enzymes if the added nucleotides pair with geometries that are similar to those displayed by standard duplex DNA. Here, we present crystal structures of 16-mer duplexes showing this to be the case with two non-standard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) that were designed to form a Z:P pair with a standard “edge on” Watson-Crick geometry, but joined by rearranged hydrogen bond donor and acceptor groups. One duplex, with four Z:P pairs, was crystallized with a reverse transcriptase host and adopts primarily a B-form. Another contained six consecutive Z:P pairs; it crystallized without a host in an A-form. In both structures, Z:P pairs fit canonical nucleobase hydrogen-bonding parameters and known DNA helical forms. Unique features include stacking of the nitro group on Z with the adjacent nucleobase ring in the A-form duplex. In both B-and A-duplexes, major groove widths for the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs, perhaps to accommodate the large nitro group on Z. Otherwise, ZP-rich DNA had many of the same properties as CG-rich DNA, a conclusion supported by circular dichroism studies in solution. The ability of standard duplexes to accommodate multiple and consecutive Z:P pairs is consistent with the ability of natural polymerases to biosynthesize those pairs. This, in turn, implies that the GACTZP synthetic genetic system can explore the entire expanded sequence space that additional nucleotides create, a major step forward in this area of synthetic biology.

Concepts: DNA, RNA, Base pair, Hydrogen bond, Nucleotide, Adenine, Nucleobase, Nucleic acid analogues


We report that engineered Cas9 variants with improved specificity-eCas9-1.1 and Cas9-HF1-are often poorly active in human cells, when complexed with single guide RNAs (sgRNAs) with a mismatch at the 5' terminus, relative to target DNA sequences. Because the nucleotide at the 5' end of sgRNAs, expressed under the control of the commonly-used U6 promoter, is fixed to a guanine, these attenuated Cas9 variants are not useful at many target sites. By using sgRNAs with matched 5' nucleotides, produced by linking them to a self-cleaving ribozyme, the editing activity of Cas9 variants can be rescued without sacrificing high specificity.

Concepts: DNA, Gene, RNA, Nucleic acid, Nucleotide, Adenine, Nucleobase, Cytosine