Discover the most talked about and latest scientific content & concepts.

Concept: Nuclear physics


Transmutation of long-lived fission products (LLFPs: (79)Se, (93)Zr, (99)Tc, (107)Pd, (129)I, and (135)Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD2), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

Concepts: Nuclear physics, Neutron, Nuclear fission, Isotope, Nuclear technology, Neutron moderator, Neutron temperature, Nuclear transmutation


To evaluate the environmental contamination and radiation exposure dose rates due to artificial radionuclides in Kawauchi Village, Fukushima Prefecture, the restricted area within a 30-km radius from the Fukushima Dai-ichi Nuclear Power Plant (FNPP), the concentrations of artificial radionuclides in soil samples, tree needles, and mushrooms were analyzed by gamma spectrometry. Nine months have passed since samples were collected on December 19 and 20, 2011, 9 months after the FNPP accident, and the prevalent dose-forming artificial radionuclides from all samples were (134)Cs and (137)Cs. The estimated external effective doses from soil samples were 0.42-7.2 µSv/h (3.7-63.0 mSv/y) within the 20-km radius from FNPP and 0.0011-0.38 µSv/h (0.010-3.3 mSv/y) within the 20-30 km radius from FNPP. The present study revealed that current levels are sufficiently decreasing in Kawauchi Village, especially in areas within the 20- to 30-km radius from FNPP. Thus, residents may return their homes with long-term follow-up of the environmental monitoring and countermeasures such as decontamination and restrictions of the intake of foods for reducing unnecessary exposure. The case of Kawauchi Village will be the first model for the return to residents' homes after the FNPP accident.

Concepts: Ionizing radiation, Nuclear physics, Chernobyl disaster, Radioactive decay, Nuclear power, Radioactive contamination, Prefectures of Japan, Fukushima Prefecture


Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

Concepts: Nuclear physics, Fundamental physics concepts, Atom, Neutron, Nuclear fusion, Uranium, Nuclear fission, Nuclear weapon


Here we show the efficacy of graphene oxide (GO) for rapid removal of some of the most toxic and radioactive long-lived human-made radionuclides from contaminated water, even from acidic solutions (pH < 2). The interaction of GO with actinides including Am(iii), Th(iv), Pu(iv), Np(v), U(vi) and typical fission products Sr(ii), Eu(iii) and Tc(vii) were studied, along with their sorption kinetics. Cation/GO coagulation occurs with the formation of nanoparticle aggregates of GO sheets, facilitating their removal. GO is far more effective in removal of transuranium elements from simulated nuclear waste solutions than other routinely used sorbents such as bentonite clays and activated carbon. These results point toward a simple methodology to mollify the severity of nuclear waste contamination, thereby leading to effective measures for environmental remediation.

Concepts: Carbon dioxide, Nuclear physics, Chemical element, Colloid, Nuclear fission, Activated carbon, Radioactive contamination, Radioactive waste


We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h(-1)), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity.

Concepts: Conservation biology, Nuclear physics, Bird, Dose, Nuclear fission, Nuclear power, Austria, Lists of nuclear disasters and radioactive incidents


Plutonium (Pu) and non-natural uranium (U) originating from the Fukushima Daiichi Nuclear Power Plant (FDNPP) were identified in the atmosphere at 120 km distance from the FDNPP analyzing the ratio of number of atoms, following written as n(isotope)/n(isotope), of Pu and U. The n((240)Pu)/n((239)Pu), n((241)Pu)/n((239)Pu), n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U) in aerosol samples collected before and after the FDNPP incident were analyzed by accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS). The activity concentrations of (137)Cs and (134)Cs in the same samples were also analyzed by gamma spectrometry before the destructive analysis. Comparing the time series of analytical data on Pu and U obtained in this study with previously reported data on Pu, U, and radioactive Cs, we concluded that Pu and non-natural U from the FDNPP were transported in the atmosphere directly over a 120 km distance by aerosol and wind within a few days after the reactor hydrogen explosions. Effective dose of Pu were calculated using the data of Pu: (130 ± 21) nBq/m(3), obtained in this study. We found that the airborne Pu contributes only negligibly to the total dose at the time of the incident. However the analytical results show that the amount of Pu and non-natural U certainly increased in the environment after the incident.

Concepts: Spectroscopy, Mass spectrometry, Nuclear physics, Chemical element, Nuclear fission, Nuclear power, Nuclear proliferation, Plutonium


The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

Concepts: Nuclear physics, Nuclear fission, Coal, Nuclear power, Energy development, Electricity generation, Sustainable energy, World energy resources and consumption


The Fukushima Daiichi Nuclear Power Plant accident (FDNPP) has caused serious contamination in the environment. The release of Pu isotopes renewed considerable public concern because they present a large risk for internal radiation exposure. In this review, we summarize and analyze published studies related to the release of Pu from the FDNPP accident based on environmental sample analyses and the ORIGEN model simulations. Our analysis emphasizes the environmental distribution of released Pu isotopes, information on Pu isotopic composition for source identification of Pu releases in the FDNPP-damaged reactors or spent fuel pools, and estimation of the amounts of Pu isotopes released from the FDNPP accident. Our analysis indicates that a trace amount of Pu isotopes (ca. 2 ×10-5 % of core inventory) was released into the environment from the damaged reactors, but not from the spent fuel pools located in the reactor buildings. Regarding the possible Pu contamination in the marine environment, limited studies suggest that no extra Pu input from the FDNPP accident could be detected in the western North Pacific 30 km off the Fukushima coast. Finally, we identified knowledge gaps remained on the release of Pu into the environment and recommended issues for future studies.

Concepts: Nuclear physics, Nuclear fission, Isotope, Nuclear weapon, Nuclear power, Nuclear proliferation, Plutonium, Spent fuel pool


Changes in population birth outcomes, including increases in low birthweight or preterm births, have been documented after natural and manmade disasters. However, information is limited following the 2011 Fukushima Daiichi Nuclear Power Plant Disaster. In this study, we assessed whether there were long-term changes in birth outcomes post-disaster, compared to pre-disaster data, and whether residential area and food purchasing patterns, as proxy measurements of evacuation and radiation-related anxiety, were associated with post-disaster birth outcomes. Maternal and perinatal data were retrospectively collected for all live singleton births at a public hospital, located 23 km from the power plant, from 2008 to 2015. Proportions of low birthweight (<2500 g at birth) and preterm births (<37 weeks gestation at birth) were compared pre- and post-disaster, and regression models were conducted to assess for associations between these outcomes and evacuation and food avoidance. A total of 1101 live singleton births were included. There were no increased proportions of low birthweight or preterm births in any year after the disaster (merged post-disaster risk ratio of low birthweight birth: 0.98, 95% confidence interval (CI): 0.64-1.51; and preterm birth: 0.68, 95% CI: 0.38-1.21). No significant associations between birth outcomes and residential area or food purchasing patterns were identified, after adjustment for covariates. In conclusion, no changes in birth outcomes were found in this institution-based investigation after the Fukushima disaster. Further research is needed on the pathways that may exacerbate or reduce disaster effects on maternal and perinatal health.

Concepts: Childbirth, Nuclear physics, Chernobyl disaster, Obstetrics, Nuclear fission, Nuclear power, Preterm birth, Electricity generation


The cross-sections of (nat)Yb (n,x)(172,173) Tm, (174)Yb(n,p) (174) Tm, (174)Yb (n,α) (171)Er, (176)Yb(n,p) (176) Tm, (176)Yb(n,α)(173) Er, and (176) Yb(n,n')(176m)Yb have been measured at 14.6±0.3MeV neutron energy, among them two cross-sections (nat)Yb (n,x)(172,173)Tm are reported for the first time. These experimental cross-sections are compared with experimental data found in the literature, with evaluated nuclear data in JENDL-4.0 and TENDL-2010 libraries and with theoretically calculated values based on nuclear reaction modular codes EMPIRE-3.0 and TALYS-1.2.

Concepts: Nuclear physics, Neutron, Nuclear fusion, Nuclear fission, Neutron radiation, Nuclear weapon, Neutron capture, Nuclear reaction