Discover the most talked about and latest scientific content & concepts.

Concept: Nitrous oxide


In the US, there are more than 163 million dogs and cats that consume, as a significant portion of their diet, animal products and therefore potentially constitute a considerable dietary footprint. Here, the energy and animal-derived product consumption of these pets in the US is evaluated for the first time, as are the environmental impacts from the animal products fed to them, including feces production. In the US, dogs and cats consume about 19% ± 2% of the amount of dietary energy that humans do (203 ± 15 PJ yr-1 vs. 1051 ± 9 PJ yr-1) and 33% ± 9% of the animal-derived energy (67 ± 17 PJ yr-1 vs. 206 ± 2 PJ yr-1). They produce about 30% ± 13%, by mass, as much feces as Americans (5.1 ± Tg yr-1 vs. 17.2 Tg yr-1), and through their diet, constitute about 25-30% of the environmental impacts from animal production in terms of the use of land, water, fossil fuel, phosphate, and biocides. Dog and cat animal product consumption is responsible for release of up to 64 ± 16 million tons CO2-equivalent methane and nitrous oxide, two powerful greenhouse gasses (GHGs). Americans are the largest pet owners in the world, but the tradition of pet ownership in the US has considerable costs. As pet ownership increases in some developing countries, especially China, and trends continue in pet food toward higher content and quality of meat, globally, pet ownership will compound the environmental impacts of human dietary choices. Reducing the rate of dog and cat ownership, perhaps in favor of other pets that offer similar health and emotional benefits would considerably reduce these impacts. Simultaneous industry-wide efforts to reduce overfeeding, reduce waste, and find alternative sources of protein will also reduce these impacts.

Concepts: Carbon dioxide, Human, Nutrition, Nitrous oxide, Dog, Pet, Greenhouse gas, Animal product


Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m(-2) d(-1)). These emission rates match those from tropical forest soils, the world’s largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.

Concepts: Oxygen, Climate, Soil, Nitrogen, Nitrous oxide, Arctic, Greenhouse gas, Peat


Methane and nitrous oxide are potent greenhouse gases (GHGs) that contribute to climate change. Coastal sediments are important GHG producers, but the contribution of macrofauna (benthic invertebrates larger than 1 mm) inhabiting them is currently unknown. Through a combination of trace gas, isotope, and molecular analyses, we studied the direct and indirect contribution of two macrofaunal groups, polychaetes and bivalves, to methane and nitrous oxide fluxes from coastal sediments. Our results indicate that macrofauna increases benthic methane efflux by a factor of up to eight, potentially accounting for an estimated 9.5% of total emissions from the Baltic Sea. Polychaetes indirectly enhance methane efflux through bioturbation, while bivalves have a direct effect on methane release. Bivalves host archaeal methanogenic symbionts carrying out preferentially hydrogenotrophic methanogenesis, as suggested by analysis of methane isotopes. Low temperatures (8 °C) also stimulate production of nitrous oxide, which is consumed by benthic denitrifying bacteria before it reaches the water column. We show that macrofauna contributes to GHG production and that the extent is dependent on lineage. Thus, macrofauna may play an important, but overlooked role in regulating GHG production and exchange in coastal sediment ecosystems.

Concepts: Carbon dioxide, Bacteria, Baltic Sea, Anaerobic digestion, Natural gas, Methane, Nitrous oxide, Greenhouse gas


Ketamine, an N-methyl-D-aspartate receptor (NMDAR) channel blocker, has been found to induce rapid and robust antidepressant-like effects in rodent models and in treatment-refractory depressed patients. However, the marked acute psychological side effects of ketamine complicate the interpretation of both preclinical and clinical data. Moreover, the lack of controlled data demonstrating the ability of ketamine to sustain the antidepressant response with repeated administration leaves the potential clinical utility of this class of drugs in question. Using quantitative electroencephalography (qEEG) to objectively align doses of a low-trapping NMDA channel blocker, AZD6765 (lanicemine), to that of ketamine, we demonstrate the potential for NMDA channel blockers to produce antidepressant efficacy without psychotomimetic and dissociative side effects. Furthermore, using placebo-controlled data, we show that the antidepressant response to NMDA channel blockers can be maintained with repeated and intermittent drug administration. Together, these data provide a path for the development of novel glutamatergic-based therapeutics for treatment-refractory mood disorders.Molecular Psychiatry advance online publication, 15 October 2013; doi:10.1038/mp.2013.130.

Concepts: Pharmacology, NMDA receptor, Nitrous oxide, Ketamine, Phencyclidine, Dextromethorphan


Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3-), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3-and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3–N kg-1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3-explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.

Concepts: Oxygen, Nitrogen, Ozone depletion, Nitrous oxide, Greenhouse gas, Ozone layer, Ozone, Chlorofluorocarbon


Nitrosation of thiols is thought to be mediated by dinitrogen trioxide (N(2)O(3)) or by nitrogen dioxide radical (()NO(2)). A kinetic study of glutathione (GSH) nitrosation by NO donors in aerated buffered solutions was undertaken. S-nitrosoglutathione (GSNO) formation was assessed spectrophotometrically and by chemiluminescence. The results suggest an increase in the rate of GSNO formation with an increase in GSH with a half-maximum constant EC(50) that depends on NO concentration. Our observed increase in EC(50) with NO concentration suggests a significant contribution of ()NO(2)-mediated nitrosation with the glutathiyl radical as an intermediate in the production of GSNO.

Concepts: Nitrogen, Oxide, Nitric oxide, Nitrous oxide, Dinitrogen trioxide, Dinitrogen tetroxide, Nitrogen dioxide, Dinitrogen pentoxide


This study attempts to elucidate the emission sources and mechanisms of nitrous oxide (N2O) during simultaneous nitrification and denitrification (SND) process under oxygen-limiting condition. The results indicated that N2O emitted during low-oxygen SND process was 0.8±0.1mgN/gMLSS, accounting for 7.7% of the nitrogen input. This was much higher than the reported results from conventional nitrification and denitrification processes. Batch experiments revealed that nitrifier denitrification was attributed as the dominant source of N2O production. This could be well explained by the change of ammonia-oxidizing bacteria (AOB) community caused by the low-oxygen condition. It was observed that during the low-oxygen SND process, AOB species capable of denitrification, i.e., Nitrosomonas europaea and Nitrosomonas-like, were enriched whilst the composition of denitrifiers was only slightly affected. N2O emission by heterotrophic denitrification was considered to be limited by the presence of oxygen and unavailability of carbon source.

Concepts: Oxygen, Carbon dioxide, Bacteria, Nitrogen, Nitrous oxide, Denitrification, Nitrogen dioxide, Nitrogen cycle


Post-traumatic stress disorder (PTSD) involves maladaptive long-term memory formation which underlies involuntary intrusive thoughts about the trauma. Preventing the development of such maladaptive memory is a key aim in preventing the development of PTSD. We examined whether the N-methyl d-aspartate receptor (NMDAR) antagonist gas nitrous oxide (N2O) could reduce the frequency of intrusive memories by inhibiting NMDAR-dependent memory consolidation in a laboratory analogue of psychological trauma. Method Participants were randomized to inhale N2O (N = 25) or medical air (N = 25) after viewing a negatively valenced emotional film clip (���trauma film���). Participants subsequently completed a daily diary assessing frequency of intrusive thoughts relating to the film clip. A week later, participants completed an explicit memory recall task related to the film.

Concepts: Psychology, Nitrogen, Memory, Psychological trauma, Posttraumatic stress disorder, Stress, Long-term potentiation, Nitrous oxide


Two greenhouse gases -methane (CH4) and nitrous oxide (N2O) - were monitored monthly during one year (2011) at the Eguzon Reservoir in France. The objective of the study was to quantify for the first time in a temperate area the total emissions of these gases through the main emission pathways (diffusion and bubbling from the reservoir, degassing and downstream diffusion). The reservoir was impounded in 1926 and had, in 2011, a eutrophic status promoting high organic matter degradation and nitrification-denitrification, all favouring CH4 and N2O production. CH4 and N2O emissions were dominated by diffusion from the reservoir surface (respectively 78.0% and 92.3%). Ebullition was only observed for CH4 and accounted for 14.0% of total CH4 emissions. Downstream degassing and diffusion represented 8.1% of the total CH4 emissions and 7.7% of the total N2O emissions.

Concepts: Carbon dioxide, Nitrogen, Natural gas, Methane, Nitrous oxide, Greenhouse gas, Global warming potential, Greenhouse gases


Nitrite-oxidizing bacteria (NOB) have conventionally been regarded as a highly specialized functional group responsible for the production of nitrate in the environment. However, recent culture-based studies suggest that they have the capacity to lead alternative lifestyles, but direct environmental evidence for the contribution of marine nitrite oxidizers to other processes has been lacking to date. We report on the alternative biogeochemical functions, worldwide distribution, and sometimes high abundance of the marine NOB Nitrococcus. These largely overlooked bacteria are capable of not only oxidizing nitrite but also reducing nitrate and producing nitrous oxide, an ozone-depleting agent and greenhouse gas. Furthermore, Nitrococcus can aerobically oxidize sulfide, thereby also engaging in the sulfur cycle. In the currently fast-changing global oceans, these findings highlight the potential functional switches these ubiquitous bacteria can perform in various biogeochemical cycles, each with distinct or even contrasting consequences.

Concepts: Photosynthesis, Oxygen, Carbon dioxide, Redox, Oxidizing agent, Nitrogen, Carbon, Nitrous oxide