Discover the most talked about and latest scientific content & concepts.

Concept: Nickel


Strain hardening capability is critical for metallic materials to achieve high ductility during plastic deformation. A majority of nanocrystalline metals, however, have inherently low work hardening capability with few exceptions. Interpretations on work hardening mechanisms in nanocrystalline metals are still controversial due to the lack of in situ experimental evidence. Here we report, by using an in situ transmission electron microscope nanoindentation tool, the direct observation of dynamic work hardening event in nanocrystalline nickel. During strain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded show an increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading cycles. This study provides both the evidence to explain the roots of work hardening at small length scales and the insight for future design of ductile nanocrystalline metals.

Concepts: Metal, Solid mechanics, Nickel, Metalworking, Work hardening, Deformation, Dislocation, Ductility


For more than one century, hydrogen assisted degradation of metallic microstructures has been identified as origin for severe technical component failures but the mechanisms behind have not yet been completely understood so far. Any in-situ observation of hydrogen transport phenomena in microstructures will provide more details for further elucidation of these degradation mechanisms. A novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS instrument enables electrochemical charging with deuterium through the inner surface of the cell made from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the austenite-ferrite interface has been found.

Concepts: Iron, Metallurgy, Steel, Austenite, Stainless steel, Nickel, Corrosion, Microstructure


We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula.

Concepts: Iron, Chondrite, Carbonaceous chondrite, Copper, Nickel, Meteorite, Iron meteorite, Taenite


Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 µg of Ni and 86 µg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked significant source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

Concepts: Steel, Titanium, Stainless steel, Chromium, Nickel, Corrosion, Sauce, Steels


The degradation of some organophosphorus pesticides (OPPs) in the presence of metal ions was studied by (31)P-NMR spectroscopy. Both (31)P-NMR and gas chromatography/mass spectroscopy results were used in order to determine the nature of metabolites formed after degradation. The degraded organophosphorus pesticide were investigated for chlorpyrifos and phoxim in the presence of several metal ions including Hg(2+), Cu(2+), Cd(2+), Ni(2+), Pb(2+), and Ag(+). (31)P-NMR results indicated Ag(+) and Hg(2+) ion promoted degradation of OPPs and other metal ions formed complex with OPPs and cannot degrade OPPs. We found that the degradation of chlorpyrifos and phoxim with Ag(+) or Hg(2+) led to the formation of O,O-diethyl-O-methyl phosphorothionate, (C(2)H(5)O)(2)(CH(3)O)PS, at metal ion/pesticide mole ratios ≤1.0 and completely decomposed at a higher mole ratio of 10. Finally, the method was successfully applied to the degradation study of a number of technical and formulated pesticides in the presence of Ag(+) ion at a metal ion/pesticide mole ratio of 10.

Concepts: Iron, Hydrogen, Metal, Solid, Potassium, Silver, Ionic bond, Nickel


Materials with very high hydrogen density have attracted considerable interest due to a range of motivations, including the search for chemically precompressed metallic hydrogen and hydrogen storage applications. Using high-pressure synchrotron X-ray diffraction technique and theoretical calculations, we have discovered a new rhodium dihydride (RhH(2)) with high volumetric hydrogen density (163.7 g/L). Compressing rhodium in fluid hydrogen at ambient temperature, the fcc rhodium metal absorbs hydrogen and expands unit-cell volume by two discrete steps to form NaCl-typed fcc rhodium monohydride at 4 GPa and fluorite-typed fcc RhH(2) at 8 GPa. RhH(2) is the first dihydride discovered in the platinum group metals under high pressure. Our low-temperature experiments show that RhH(2) is recoverable after releasing pressure cryogenically to 1 bar and is capable of retaining hydrogen up to 150 K for minutes and 77 K for an indefinite length of time.

Concepts: Volume, Thermodynamics, Metal, Osmium, Liquid hydrogen, Nickel, Iridium, Platinum group


Most existing methods for additive manufacturing (AM) of metals are inherently limited to ~20-50 μm resolution, which makes them untenable for generating complex 3D-printed metallic structures with smaller features. We developed a lithography-based process to create complex 3D nano-architected metals with ~100 nm resolution. We first synthesize hybrid organic-inorganic materials that contain Ni clusters to produce a metal-rich photoresist, then use two-photon lithography to sculpt 3D polymer scaffolds, and pyrolyze them to volatilize the organics, which produces a >90 wt% Ni-containing architecture. We demonstrate nanolattices with octet geometries, 2 μm unit cells and 300-400-nm diameter beams made of 20-nm grained nanocrystalline, nanoporous Ni. Nanomechanical experiments reveal their specific strength to be 2.1-7.2 MPa g-1 cm3, which is comparable to lattice architectures fabricated using existing metal AM processes. This work demonstrates an efficient pathway to 3D-print micro-architected and nano-architected metals with sub-micron resolution.

Concepts: Iron, Polymer, Metal, Copper, Materials science, Heavy metal music, Nickel, Specific strength


Following our previous report on the selective transformation of cellulose to ethylene glycol (EG) over a binary catalyst composed of tungstic acid and Ru/C, we herein report a new low-cost but more effective binary catalyst by using Raney nickel in place of Ru/C (Raney Ni+H2 WO4 ). In addition to tungstic acid, other W compounds were also investigated in combination with Raney Ni. The results showed that the EG yield depended on the W compound: H4 SiW12 O40

Concepts: Hydrogen, Catalysis, Hydrogenation, Catalytic converter, Alkene, Ethylene glycol, Nickel, Raney nickel


A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012 - 2013. Six doses (0, 20, 40, 60, 80, 100 t ha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 t ha(-1) of tannery sludge and these were 94, 113 and 61 % higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27 % respectively over control,with tannery sludge application at 80 t ha(-1). Heavy metals such as chromium, cadmium and lead content reduced in post harvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea ) can be grown in soil amended with 80 tha(-1) sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.

Concepts: Iron, Metal, Lead, Heavy metal music, Chromium, Nickel, Tungsten, Salvia sclarea


Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

Concepts: Copper, Gold, Transition metals, Silver, Transition metal, Palladium, Nickel, Rhodium