SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Neurotrophins

170

BACKGROUND: Cognitive impairments are seen in first psychotic episode (FEP) patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF) levels are associated with cognitive impairment in FEP patients compared with healthy controls. METHODS: 45 FEP patients and 45 healthy controls matched by age, gender and educational level were selected from the Basque Country area of Spain. Plasma BDNF levels were assessed in healthy controls and in patients. A battery of cognitive tests was applied to both groups, with the patients being assessed at 6 months after the acute episode and only in those with a clinical response to treatment. RESULTS: Plasma BDNF levels were altered in patients compared with the control group. In FEP patients, we observed a positive association between BDNF levels at six months and five cognitive domains (learning ability, immediate and delayed memory, abstract thinking and processing speed) which persisted after controlling for medications prescribed, drug use, intelligence quotient (IQ) and negative symptoms. In the healthy control group, BDNF levels were not associated with cognitive test scores. CONCLUSION: Our results suggest that BDNF is associated with the cognitive impairment seen after a FEP. Further investigations of the role of this neurotrophin in the symptoms associated with psychosis onset are warranted.

Concepts: Psychology, Psychosis, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Electroconvulsive therapy, Basque Country

157

We examined the efficacy of group-based cognitive intervention (GCI) and home-based cognitive intervention (HCI) in amnestic mild cognitive impairment (aMCI) and intervention effects on serum brain-derived neurotrophic factor (BDNF).

Concepts: Randomized controlled trial, Effectiveness, Efficacy, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Mild cognitive impairment

58

Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We observed that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p < 0.001) and greater adiposity in both adult and pediatric cohorts (p values < 0.05). We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype.

Concepts: DNA, Gene, Genetics, Gene expression, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins

44

This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.

Concepts: Better, Exercise, Hippocampus, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Health club

28

With the aim of elucidating the neural mechanisms of early learning, we studied the role of brain-derived neurotrophic factor (BDNF) in visual imprinting in birds. The telencephalic neural circuit connecting the visual Wulst and intermediate medial mesopallium is critical for imprinting, and the core region of the hyperpallium densocellulare (HDCo), situated at the center of this circuit, has a key role in regulating the activity of the circuit. We found that the number of BDNF mRNA-positive cells in the HDCo was elevated during the critical period, particularly at its onset, on the day of hatching (P0). After imprinting training on P1, BDNF mRNA-positive cells in the HDCo increased in number, and tyrosine phosphorylation of TrkB was observed. BDNF infusion into the HDCo at P1 induced imprinting, even with a weak training protocol that does not normally induce imprinting. In contrast, K252a, an antagonist of Trk, inhibited imprinting. Injection of BDNF at P7, after the critical period, did not elicit imprinting. These results suggest that BDNF promotes the induction of imprinting through TrkB exclusively during the critical period.

Concepts: Nervous system, Phosphorylation, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Critical period, Imprinting

28

The present study analyzed the in vitro effects induced by sodium L-lactate on human astrocytes and the SH-SY5Y cell line, when added at concentrations of 5, 10, and 25 mmol/liter. Expression of brain-derived neurotrophic factor (BDNF), inducible nitric oxide synthase (iNOS), and heat shock protein 70 kDa (HSP70) was evaluated by Western blot analysis. Cell viability with MTT, release of nitric oxide (NO) through the Griess reaction, and production of BDNF by enzyme-linked immunoassay was determined. Data indicate that, in SH-SY5Y as well as in cortical astrocytes, after 4 hr sodium L-lactate increases the expression and release of BDNF, iNOS, and NO; after 24 hr, it turns is ineffective for the production of the neurotrophin in SH-SY5Y and not in astrocytes, but the expression of iNOS and release of NO appear to be further increased compared with those after 4 hr. Sodium L-lactate influences differently the expression of HSP70 in SH-SY5Y compared with astrocytes. We propose, based on these findings, that sodium L-lactate affects the expression of BDNF in SH-SY5Y and astrocytes in a different manner: high levels of iNOS and NO expressed in SH-SY5Y have a profound inhibitory effect on the release of BDNF related to a more limited production of HSP70 by SH-SY5Y. In conclusion, the results demonstrate differences in the responses of SH-SY5Y and astrocytes to stimulation by high levels of sodium L-lactate. Sodium L-lactate differently and dose and time dependently influences the expression and release of BDNF, iNOS, NO, and HSP70 depending on the cell type. © 2012 Wiley Periodicals, Inc.

Concepts: Cell, Nitric oxide, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Nitric oxide synthase, Heat shock protein, Neurotrophins

26

Using whole-brain structural measures coupled to analysis of salivary brain-derived neurotrophic factor (BDNF), we demonstrate sensory motor training-induced plasticity, including cerebellar gray matter volume increment and increased BDNF level. The increase of cerebellar volume was positively correlated with the increase of BDNF level.

Concepts: Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins

26

Brain-derived neurotropic factor (BDNF) is widely distributed in the peripheral and central nervous systems. BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of several mental illnesses. To elucidate the role of BDNF, we compared the plasma BDNF levels and the BDNF Val66Met gene variants effect in several mental disorders.

Concepts: Nervous system, Mental disorder, Schizophrenia, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Suicide

24

In early- or late-onset Alzheimer’s disease (AD), inflammation, which is triggered by pathologic conditions, influences the progression of neurodegeneration. Brain-derived neurotrophic factor (BDNF) has emerged as a crucial mediator of neurogenesis, because it exhibits a remarkable activity-dependent regulation of expression, which suggests that it may link inflammation to neurogenesis. Emerging evidence suggests that acute and chronic inflammation in AD differentially modulates neurotrophin functions, which are related to the roles of inflammation in neuroprotection and neurodegeneration. Recent studies also indicate novel mechanisms of BDNF-mediated neuroprotection, including the modulation of autophagy. Numerous research studies have demonstrated reverse parallel alterations between proinflammatory cytokines and BDNF during neurodegeneration; thus, we hypothesize that one mechanism that underlies the negative impact of chronic inflammation on neurogenesis is the reduction of BDNF production and function by proinflammatory cytokines.

Concepts: Pneumonia, Neurology, Dementia, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Curcumin

24

This study aimed to compare serum brain-derived neurotrophic factor (BDNF) levels “which contributes in both neuron development/regeneration” between combat sport braches, which requires high attention and concentration and can lead micro and macro brain trauma, and athleticism, which requires durability in competition.

Concepts: Psychology, Traumatic brain injury, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Sport, Kick