SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Neurology

653

 To determine whether patient outcomes differ between general internists who graduated from a medical school outside the United States and those who graduated from a US medical school.

Concepts: Pathology, United States, Physician, Neurology, High school, Pediatrics, Medical school, Internal medicine

272

Progressive multiple sclerosis (MS) is a severely disabling neurological condition, and an effective treatment is urgently needed. Recently, high-dose biotin has emerged as a promising therapy for affected individuals. Initial clinical data have shown that daily doses of biotin of up to 300 mg can improve objective measures of MS-related disability. In this article, we review the biology of biotin and explore the properties of this ubiquitous coenzyme that may explain the encouraging responses seen in patients with progressive MS. The gradual worsening of neurological disability in patients with progressive MS is caused by progressive axonal loss or damage. The triggers for axonal loss in MS likely include both inflammatory demyelination of the myelin sheath and primary neurodegeneration caused by a state of virtual hypoxia within the neuron. Accordingly, targeting both these pathological processes could be effective in the treatment of progressive MS. Biotin is an essential co-factor for five carboxylases involved in fatty acid synthesis and energy production. We hypothesize that high-dose biotin is exerting a therapeutic effect in patients with progressive MS through two different and complementary mechanisms: by promoting axonal remyelination by enhancing myelin production and by reducing axonal hypoxia through enhanced energy production.

Concepts: Nervous system, Neuron, Action potential, Multiple sclerosis, Neurology, Axon, Myelin, Oligodendrocyte

257

Under economic pressure, medicine is increasingly being subjected to the efficiency principles of “Taylorism.” But applying standardization to certain vital aspects of medicine can result in inappropriate and unresponsive care, as well as clinician burnout.

Concepts: Health care, Medicine, Neurology, Geriatrics, Health care system

212

To identify where a consensus can be reached between veterinary experts in feline medicine on the core signs sufficient for pain (sufficient to indicate pain when they occur, but not necessarily present in all painful conditions) and necessary for pain (necessary in the presence of pain, but not always indicative of pain).

Concepts: Neuroscience, Neurology, Acupuncture, Dentistry, Suffering, Necessity

188

The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer’s disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer’s disease susceptibility and progression in the live human brain.

Concepts: Central nervous system, Neuron, Brain, Magnetic resonance imaging, Neurology, Cerebrospinal fluid, Beta amyloid, Blood-brain barrier

188

Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults.

Concepts: Psychology, Brain, Randomized controlled trial, Cognition, Neurology, Working memory, Executive functions, Stroop effect

175

Traumatic brain injury (TBI) has long been recognized as the leading cause of traumatic death and disability. Tremendous advances in surgical and intensive care unit management of the primary injury, including maintaining adequate oxygenation, controlling intracranial pressure, and ensuring proper cerebral perfusion pressure, have resulted in reduced mortality. However, the secondary injury phase of TBI is a prolonged pathogenic process characterized by neuroinflammation, excitatory amino acids, free radicals, and ion imbalance. There are no approved therapies to directly address these underlying processes. Here, we present a case that was intentionally treated with substantial amounts of omega-3 fatty acids (n-3FA) to provide the nutritional foundation for the brain to begin the healing process following severe TBI. Recent animal research supports the use of n-3FA, and clinical experience suggests that benefits may be possible from substantially and aggressively adding n-3FA to optimize the nutritional foundation of severe TBI patients and must be in place if the brain is to be given the opportunity to repair itself to the best possible extent. Administration early in the course of treatment, in the emergency department or sooner, has the potential to improve outcomes from this potentially devastating public health problem.

Concepts: Nutrition, Fatty acid, Traumatic brain injury, Intracranial pressure, Omega-3 fatty acid, Neurology, Cerebral perfusion pressure, Neurotrauma

174

Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices.

Concepts: Neuron, Brain, Magnetic field, Brain tumor, Human brain, Magnetic resonance imaging, Neurology, Transcranial magnetic stimulation

173

Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by resting tremor, slowness of movements, rigidity, gait disturbance and postural instability. Most investigations on Parkinson’s disease focused on the basal ganglia, whereas the cerebellum has often been overlooked. However, increasing evidence suggests that the cerebellum may have certain roles in the pathophysiology of Parkinson’s disease. Anatomical studies identified reciprocal connections between the basal ganglia and cerebellum. There are Parkinson’s disease-related pathological changes in the cerebellum. Functional or morphological modulations in the cerebellum were detected related to akinesia/rigidity, tremor, gait disturbance, dyskinesia and some non-motor symptoms. It is likely that the major roles of the cerebellum in Parkinson’s disease include pathological and compensatory effects. Pathological changes in the cerebellum might be induced by dopaminergic degeneration, abnormal drives from the basal ganglia and dopaminergic treatment, and may account for some clinical symptoms in Parkinson’s disease. The compensatory effect may help maintain better motor and non-motor functions. The cerebellum is also a potential target for some parkinsonian symptoms. Our knowledge about the roles of the cerebellum in Parkinson’s disease remains limited, and further attention to the cerebellum is warranted.

Concepts: Neurology, Parkinson's disease, Deep brain stimulation, Basal ganglia, Substantia nigra, Dopamine, Haloperidol, Tremor

172

Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders.

Concepts: Histone deacetylase, Neuroscience, Neurology, Vorinostat, Histone deacetylase inhibitor, Trichostatin A, Hydroxamic acid, Hydroxamic acids