SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Neurofibrillary tangle

179

Extracellular plaques of amyloid-β and intraneuronal neurofibrillary tangles made from tau are the histopathological signatures of Alzheimer’s disease. Plaques comprise amyloid-β fibrils that assemble from monomeric and oligomeric intermediates, and are prognostic indicators of Alzheimer’s disease. Despite the importance of plaques to Alzheimer’s disease, oligomers are considered to be the principal toxic forms of amyloid-β. Interestingly, many adverse responses to amyloid-β, such as cytotoxicity, microtubule loss, impaired memory and learning, and neuritic degeneration, are greatly amplified by tau expression. Amino-terminally truncated, pyroglutamylated (pE) forms of amyloid-β are strongly associated with Alzheimer’s disease, are more toxic than amyloid-β, residues 1-42 (Aβ(1-42)) and Aβ(1-40), and have been proposed as initiators of Alzheimer’s disease pathogenesis. Here we report a mechanism by which pE-Aβ may trigger Alzheimer’s disease. Aβ(3(pE)-42) co-oligomerizes with excess Aβ(1-42) to form metastable low-n oligomers (LNOs) that are structurally distinct and far more cytotoxic to cultured neurons than comparable LNOs made from Aβ(1-42) alone. Tau is required for cytotoxicity, and LNOs comprising 5% Aβ(3(pE)-42) plus 95% Aβ(1-42) (5% pE-Aβ) seed new cytotoxic LNOs through multiple serial dilutions into Aβ(1-42) monomers in the absence of additional Aβ(3(pE)-42). LNOs isolated from human Alzheimer’s disease brain contained Aβ(3(pE)-42), and enhanced Aβ(3(pE)-42) formation in mice triggered neuron loss and gliosis at 3 months, but not in a tau-null background. We conclude that Aβ(3(pE)-42) confers tau-dependent neuronal death and causes template-induced misfolding of Aβ(1-42) into structurally distinct LNOs that propagate by a prion-like mechanism. Our results raise the possibility that Aβ(3(pE)-42) acts similarly at a primary step in Alzheimer’s disease pathogenesis.

Concepts: Alzheimer's disease, Neuron, Polymer chemistry, Monomer, Acetylcholine, Toxicity, Oligomer, Neurofibrillary tangle

172

Over the past two decades, it has become increasingly apparent that Alzheimer’s disease neuropathology is characterized by activated microglia (brain resident macrophages) as well as the classic features of amyloid plaques and neurofibrillary tangles. The intricacy of microglial biology has also become apparent, leading to a heightened research interest in this particular cell type. Over the years a number of different microglial cell culturing techniques have been developed to study either primary mammalian microglia, or immortalized cell lines. Each microglial system has advantages and disadvantages and should be selected for its appropriateness in a particular research context. This review summarizes several of the most common microglial cell culture systems currently being employed in Alzheimer’s research including primary microglia; BV2 and N9 retroviral immortalized microglia; human immortalized microglia (HMO6); and spontaneously immortalized rodent microglial lines (EOC lines and HAPI cells). Particularities of cell culture requirements and characteristics of microglial behavior, especially in response to applied inflammogen stimuli, are compared and discussed across these cell types.

Concepts: Alzheimer's disease, Cell, Cell biology, Cell culture, Neurology, Beta amyloid, Microglia, Neurofibrillary tangle

168

Alzheimer’s disease (AD) is characterized by deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against Aβ to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated Aβ. In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal Aβ, and reduce soluble and insoluble Aβ in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aβ in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating-Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis.

Concepts: Alzheimer's disease, Neuron, Clinical trial, Monoclonal antibodies, Neurology, Dementia, Mental status examination, Neurofibrillary tangle

113

Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer’s disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APPSwedish-expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

Concepts: Alzheimer's disease, Asthma, Neurology, Beta amyloid, Mouse, Carboxylic acids, Neurofibrillary tangle, Cromoglicic acid

89

In Alzheimer’s disease, aggregates of Aβ and tau in amyloid plaques and neurofibrillary tangles spread progressively across brain tissues following a characteristic pattern, implying a tissue-specific vulnerability to the disease. We report a transcriptional analysis of healthy brains and identify an expression signature that predicts-at ages well before the typical onset-the tissue-specific progression of the disease. We obtain this result by finding a quantitative correlation between the histopathological staging of the disease and the expression patterns of the proteins that coaggregate in amyloid plaques and neurofibrillary tangles, together with those of the protein homeostasis components that regulate Aβ and tau. Because this expression signature is evident in healthy brains, our analysis provides an explanatory link between a tissue-specific environmental risk of protein aggregation and a corresponding vulnerability to Alzheimer’s disease.

Concepts: Alzheimer's disease, Gene, Transcription, Histopathology, Peptide, Beta amyloid, Neurofibrillary tangle

33

Alzheimer’s disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-β plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer’s disease posits that the excessive accumulation of amyloid-β peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer’s disease (FAD) mutations exhibit amyloid-β-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer’s disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer’s disease patients have shown elevated levels of toxic amyloid-β species and phosphorylated tau but did not demonstrate amyloid-β plaques or neurofibrillary tangles. Here we report that FAD mutations in β-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-β, including amyloid-β plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-β generation with β- or γ-secretase inhibitors not only decreased amyloid-β pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-β-mediated tau phosphorylation. We have successfully recapitulated amyloid-β and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer’s disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.

Concepts: Alzheimer's disease, Neuron, Adenosine triphosphate, Cell biology, Histopathology, Neurology, Dementia, Neurofibrillary tangle

29

Aggregates of hyperphosphorylated tau (PHF-tau), such as neurofibrillary tangles, are linked to the degree of cognitive impairment in Alzheimer’s disease. We have developed a novel PHF-tau targeting positron emission tomography imaging agent, [F-18]-T807, which may be useful for imaging Alzheimer’s disease and other tauopathies. Here, we describe the first human brain images with [F-18]-T807.

Concepts: Alzheimer's disease, Positron emission tomography, Neuroimaging, Positron, Single photon emission computed tomography, Neurofibrillary tangle, Carbon-11, Fluorine-18

27

Synaptic loss, plaques and neurofibrillary tangles are viewed as hallmarks of Alzheimer’s disease (AD). This study investigated synaptic markers in neocortical Brodmann area 9 (BA9) samples from 171 subjects with and without AD at different levels of cognitive impairment. The expression levels of vesicular glutamate transporters (VGLUT1&2), glutamate uptake site (EAAT2), post-synaptic density protein of 95 kD (PSD95), vesicular GABA/glycine transporter (VIAAT), somatostatin (som), synaptophysin and choline acetyl transferase (ChAT) were evaluated. VGLUT2 and EAAT2 were unaffected by dementia. The VGLUT1, PSD95, VIAAT, som, ChAT and synaptophysin expression levels significantly decreased as dementia progressed. The maximal decrease varied between 12% (synaptophysin) and 42% (som). VGLUT1 was more strongly correlated with dementia than all of the other markers (polyserial correlation = -0.41). Principal component analysis using these markers was unable to differentiate the CDR groups from one another. Therefore, the status of the major synaptic markers in BA9 does not seem to be linked to the cognitive status of AD patients. The findings of this study suggest that the loss of synaptic markers in BA9 is a late event that is only weakly related to AD dementia.

Concepts: Alzheimer's disease, Brain, Neurology, Acetylcholine, Glutamate transporter, Excitotoxicity, Brodmann area, Neurofibrillary tangle

27

This study was designed to test the interaction between amyloid-β and tau proteins as a determinant of metabolic decline in preclinical Alzheimer’s disease (AD). We assessed 120 cognitively normal individuals with [(18)F]florbetapir positron emission tomography (PET) and cerebrospinal fluid (CSF) measurements at baseline, as well as [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET at baseline and at 24 months. A voxel-based interaction model was built to test the associations between continuous measurements of CSF biomarkers, [(18)F]florbetapir and [(18)F]FDG standardized uptake value ratios (SUVR). We found that the synergistic interaction between [(18)F]florbetapir SUVR and CSF phosphorylated tau (p-tau) measurements, rather than the sum of their independent effects, was associated with a 24-month metabolic decline in basal and mesial temporal, orbitofrontal, and anterior and posterior cingulate cortices (P<0.001). In contrast, interactions using CSF amyloid-β1-42 and total tau biomarkers did not associate with metabolic decline over a time frame of 24 months. The interaction found in this study further support the framework that amyloid-β and hyperphosphorylated tau aggregates synergistically interact to cause downstream AD neurodegeneration. In fact, the regions displaying the metabolic decline reported here were confined to brain networks affected early by amyloid-β plaques and neurofibrillary tangles. Preventive clinical trials may benefit from using a combination of amyloid-β PET and p-tau biomarkers to enrich study populations of cognitively normal subjects with a high probability of disease progression in studies, using [(18)F]FDG as a biomarker of efficacy.Molecular Psychiatry advance online publication, 29 March 2016; doi:10.1038/mp.2016.37.

Concepts: Alzheimer's disease, Clinical trial, Positron emission tomography, Interaction, Neurology, Cerebrospinal fluid, Neurofibrillary tangle, Proteopathy

27

Shedding light on grey matter: Fluorescent trimethine cyanines were evaluated as imaging probes for neurofibrillary tangles in post-mortem brain sections of Alzheimer’s disease patients. These probes bind to neurofibrillary tangles with high contrast and selectivity over amyloid β plaques.

Concepts: Alzheimer's disease, Brain, Neurology, Olfaction, Beta amyloid, Dyes, Neurofibrillary tangle