Discover the most talked about and latest scientific content & concepts.

Concept: Network theory


Social networks show striking structural regularities, and both theory and evidence suggest that networks may have facilitated the development of large-scale cooperation in humans. Here, we characterize the social networks of the Hadza, a population of hunter-gatherers in Tanzania. We show that Hadza networks have important properties also seen in modernized social networks, including a skewed degree distribution, degree assortativity, transitivity, reciprocity, geographic decay and homophily. We demonstrate that Hadza camps exhibit high between-group and low within-group variation in public goods game donations. Network ties are also more likely between people who give the same amount, and the similarity in cooperative behaviour extends up to two degrees of separation. Social distance appears to be as important as genetic relatedness and physical proximity in explaining assortativity in cooperation. Our results suggest that certain elements of social network structure may have been present at an early point in human history. Also, early humans may have formed ties with both kin and non-kin, based in part on their tendency to cooperate. Social networks may thus have contributed to the emergence of cooperation.

Concepts: Sociology, Networks, Social psychology, Social network, Human evolution, Network theory, Complex network, Six degrees of separation


Superpositions of social networks, such as communication, friendship, or trade networks, are called multiplex networks, forming the structural backbone of human societies. Novel datasets now allow quantification and exploration of multiplex networks. Here we study gender-specific differences of a multiplex network from a complete behavioral dataset of an online-game society of about 300,000 players. On the individual level females perform better economically and are less risk-taking than males. Males reciprocate friendship requests from females faster than vice versa and hesitate to reciprocate hostile actions of females. On the network level females have more communication partners, who are less connected than partners of males. We find a strong homophily effect for females and higher clustering coefficients of females in trade and attack networks. Cooperative links between males are under-represented, reflecting competition for resources among males. These results confirm quantitatively that females and males manage their social networks in substantially different ways.

Concepts: Human, Male, Female, Sociology, Networks, Society, Social network, Network theory


Depression is a major public health concern worldwide. There is evidence that social support and befriending influence mental health, and an improved understanding of the social processes that drive depression has the potential to bring significant public health benefits. We investigate transmission of mood on a social network of adolescents, allowing flexibility in our model by making no prior assumption as to whether it is low mood or healthy mood that spreads. Here, we show that while depression does not spread, healthy mood among friends is associated with significantly reduced risk of developing and increased chance of recovering from depression. We found that this spreading of healthy mood can be captured using a non-linear complex contagion model. Having sufficient friends with healthy mood can halve the probability of developing, or double the probability of recovering from, depression over a 6-12-month period on an adolescent social network. Our results suggest that promotion of friendship between adolescents can reduce both incidence and prevalence of depression.

Concepts: Health care, Public health, Health, Epidemiology, Sociology, Network theory, Spread


Intergroup violence is common among humans worldwide. To assess how within-group social dynamics contribute to risky, between-group conflict, we conducted a 3-y longitudinal study of the formation of raiding parties among the Nyangatom, a group of East African nomadic pastoralists currently engaged in small-scale warfare. We also mapped the social network structure of potential male raiders. Here, we show that the initiation of raids depends on the presence of specific leaders who tend to participate in many raids, to have more friends, and to occupy more central positions in the network. However, despite the different structural position of raid leaders, raid participants are recruited from the whole population, not just from the direct friends of leaders. An individual’s decision to participate in a raid is strongly associated with the individual’s social network position in relation to other participants. Moreover, nonleaders have a larger total impact on raid participation than leaders, despite leaders' greater connectivity. Thus, we find that leaders matter more for raid initiation than participant mobilization. Social networks may play a role in supporting risky collective action, amplify the emergence of raiding parties, and hence facilitate intergroup violence in small-scale societies.

Concepts: Participation, E-participation, Sociology, Networks, Social network, Network theory, Standard RAID levels


Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

Concepts: Mathematics, Physics, Redshift, General relativity, Universe, Dark energy, Network theory, Accelerating universe


BACKGROUND: Graph theory has been recently introduced to characterize complex brain networks, making it highly suitable to investigate altered connectivity in neurologic disorders. A current model proposes autism spectrum disorder (ASD) as a developmental disconnection syndrome, supported by converging evidence in both non-syndromic and syndromic ASD. However, the effects of abnormal connectivity on network properties have not been well studied, particularly in syndromic ASD. To close this gap, brain functional networks of electroencephalographic (EEG) connectivity were studied through graph measures in patients with Tuberous Sclerosis Complex (TSC), a disorder with a high prevalence of ASD, as well as in patients with non-syndromic ASD. METHODS: EEG data were collected from TSC patients with ASD (n = 14) and without ASD (n = 29), from patients with non-syndromic ASD (n = 16), and from controls (n = 46). First, EEG connectivity was characterized by the mean coherence, the ratio of inter- over intra-hemispheric coherence and the ratio of long- over short-range coherence. Next, graph measures of the functional networks were computed and a resilience analysis was conducted. To distinguish effects related to ASD from those related to TSC, a two-way analysis of covariance (ANCOVA) was applied, using age as a covariate. RESULTS: Analysis of network properties revealed differences specific to TSC and ASD, and these differences were very consistent across subgroups. In TSC, both with and without a concurrent diagnosis of ASD, mean coherence, global efficiency, and clustering coefficient were decreased and the average path length was increased. These findings indicate an altered network topology. In ASD, both with and without a concurrent diagnosis of TSC, decreased long- over short-range coherence and markedly increased network resilience were found. CONCLUSIONS: The altered network topology in TSC represents a functional correlate of structural abnormalities and may play a role in the pathogenesis of neurological deficits. The increased resilience in ASD may reflect an excessively degenerate network with local overconnection and decreased functional specialization. This joint study of TSC and ASD networks provides a unique window to common neurobiological mechanisms in autism. Please see related commentary article here

Concepts: Brain, Electroencephalography, Autism, Asperger syndrome, Autism spectrum, Tuberous sclerosis, Graph, Network theory


Human communication in social networks is dominated by emergent statistical laws such as non-trivial correlations and temporal clustering. Recently, we found long-term correlations in the user’s activity in social communities. Here, we extend this work to study the collective behavior of the whole community with the goal of understanding the origin of clustering and long-term persistence. At the individual level, we find that the correlations in activity are a byproduct of the clustering expressed in the power-law distribution of inter-event times of single users, i.e. short periods of many events are separated by long periods of no events. On the contrary, the activity of the whole community presents long-term correlations that are a true emergent property of the system, i.e. they are not related to the distribution of inter-event times. This result suggests the existence of collective behavior, possibly arising from nontrivial communication patterns through the embedding social network.

Concepts: Time, Sociology, Networks, Community, Social network, Network theory, Network science, Complex network


Network motifs are small connected sub-graphs that have recently gathered much attention to discover structural behaviors of large and complex networks. Finding motifs with any size is one of the most important problems in complex and large networks. It needs fast and reliable algorithms and tools for achieving this purpose. CytoKavosh is one of the best choices for finding motifs with any given size in any complex network. It relies on a fast algorithm, Kavosh, which makes it faster than other existing tools. Kavosh algorithm applies some well known algorithmic features and includes tricky aspects, which make it an efficient algorithm in this field. CytoKavosh is a Cytoscape plug-in which supports us in finding motifs of given size in a network that is formerly loaded into the Cytoscape work-space (directed or undirected). High performance of CytoKavosh is achieved by dynamically linking highly optimized functions of Kavosh’s C++ to the Cytoscape Java program, which makes this plug-in suitable for analyzing large biological networks. Some significant attributes of CytoKavosh is efficiency in time usage and memory and having no limitation related to the implementation in motif size. CytoKavosh is implemented in a visual environment Cytoscape that is convenient for the users to interact and create visual options to analyze the structural behavior of a network. This plug-in can work on any given network and is very simple to use and generates graphical results of discovered motifs with any required details. There is no specific Cytoscape plug-in, specific for finding the network motifs, based on original concept. So, we have introduced for the first time, CytoKavosh as the first plug-in, and we hope that this plug-in can be improved to cover other options to make it the best motif-analyzing tool.

Concepts: Algorithm, Graph theory, Social network, Network theory, Network science, Complex network, Discrete mathematics, Algorithmic efficiency


Face-to-face social interactions enhance well-being. With the ubiquity of social media, important questions have arisen about the impact of online social interactions. In the present study, we assessed the associations of both online and offline social networks with several subjective measures of well-being. We used 3 waves (2013, 2014, and 2015) of data from 5,208 subjects in the nationally representative Gallup Panel Social Network Study survey, including social network measures, in combination with objective measures of Facebook use. We investigated the associations of Facebook activity and real-world social network activity with self-reported physical health, self-reported mental health, self-reported life satisfaction, and body mass index. Our results showed that overall, the use of Facebook was negatively associated with well-being. For example, a 1-standard-deviation increase in “likes clicked” (clicking “like” on someone else’s content), “links clicked” (clicking a link to another site or article), or “status updates” (updating one’s own Facebook status) was associated with a decrease of 5%-8% of a standard deviation in self-reported mental health. These associations were robust to multivariate cross-sectional analyses, as well as to 2-wave prospective analyses. The negative associations of Facebook use were comparable to or greater in magnitude than the positive impact of offline interactions, which suggests a possible tradeoff between offline and online relationships.

Concepts: Epidemiology, Sociology, Body mass index, Networks, Social information processing, Network theory, Online and offline, Facebook


A system is said to be meritocratic if the compensation and power available to individuals is determined by their abilities and merits. A system is topocratic if the compensation and power available to an individual is determined primarily by her position in a network. Here we introduce a model that is perfectly meritocratic for fully connected networks but that becomes topocratic for sparse networks-like the ones in society. In the model, individuals produce and sell content, but also distribute the content produced by others when they belong to the shortest path connecting a buyer and a seller. The production and distribution of content defines two channels of compensation: a meritocratic channel, where individuals are compensated for the content they produce, and a topocratic channel, where individual compensation is based on the number of shortest paths that go through them in the network. We solve the model analytically and show that the distribution of payoffs is meritocratic only if the average degree of the nodes is larger than a root of the total number of nodes. We conclude that, in the light of this model, the sparsity and structure of networks represents a fundamental constraint to the meritocracy of societies.

Concepts: Graph theory, Das Model, Marketing, Path, Shortest path problem, Network theory, Meritocracy, Merit