Discover the most talked about and latest scientific content & concepts.

Concept: Nervous system


Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD’s marked effects on the visual cortex did not significantly correlate with the drug’s other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of “ego-dissolution” and “altered meaning,” implying the importance of this particular circuit for the maintenance of “self” or “ego” and its processing of “meaning.” Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.

Concepts: Nervous system, Brain, Human brain, Cerebral cortex, Lysergic acid diethylamide, Psychedelic drug, Psychedelics, dissociatives and deliriants, Timothy Leary


Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence.

Concepts: Nervous system, Neuron, Brain, Human brain, Bird, Cerebrum, Mammal, Computational neuroscience


To the Editor: Zika virus (ZIKV) is currently spreading widely, while its clinical spectrum remains a matter of investigation. Evidence of a relationship between ZIKV infection and cerebral birth abnormalities(1),(2) is growing.(3) An increased incidence of some peripheral nervous syndromes among adults was reported during outbreaks in French Polynesia(4),(5) and Brazil,(1),(2) but no formal link with ZIKV infection was shown. We describe a case of central nervous system infection with ZIKV that was associated with meningoencephalitis in an adult. An 81-year-old man was admitted to the intensive care unit (ICU) 10 days after he had been on . . .

Concepts: AIDS, Central nervous system, Nervous system, Psychology, Brain, The Canon of Medicine, Intensive care medicine, Peripheral nervous system


Personal social network size exhibits considerable variation in the human population and is associated with both physical and mental health status. Much of this inter-individual variation in human sociality remains unexplained from a biological perspective. According to the brain opioid theory of social attachment, binding of the neuropeptide β-endorphin to μ-opioid receptors in the central nervous system (CNS) is a key neurochemical mechanism involved in social bonding, particularly amongst primates. We hypothesise that a positive association exists between activity of the μ-opioid system and the number of social relationships that an individual maintains. Given the powerful analgesic properties of β-endorphin, we tested this hypothesis using pain tolerance as an assay for activation of the endogenous μ-opioid system. We show that a simple measure of pain tolerance correlates with social network size in humans. Our results are in line with previous studies suggesting that μ-opioid receptor signalling has been elaborated beyond its basic function of pain modulation to play an important role in managing our social encounters. The neuroplasticity of the μ-opioid system is of future research interest, especially with respect to psychiatric disorders associated with symptoms of social withdrawal and anhedonia, both of which are strongly modulated by endogenous opioids.

Concepts: Central nervous system, Nervous system, Psychology, Brain, Sociology, Opioid, Pain, Analgesic


How does human brain structure mature during adolescence? We used MRI to measure cortical thickness and intracortical myelination in 297 population volunteers aged 14-24 y old. We found and replicated that association cortical areas were thicker and less myelinated than primary cortical areas at 14 y. However, association cortex had faster rates of shrinkage and myelination over the course of adolescence. Age-related increases in cortical myelination were maximized approximately at the internal layer of projection neurons. Adolescent cortical myelination and shrinkage were coupled and specifically associated with a dorsoventrally patterned gene expression profile enriched for synaptic, oligodendroglial- and schizophrenia-related genes. Topologically efficient and biologically expensive hubs of the brain anatomical network had greater rates of shrinkage/myelination and were associated with overexpression of the same transcriptional profile as cortical consolidation. We conclude that normative human brain maturation involves a genetically patterned process of consolidating anatomical network hubs. We argue that developmental variation of this consolidation process may be relevant both to normal cognitive and behavioral changes and the high incidence of schizophrenia during human brain adolescence.

Concepts: Nervous system, Neuron, Gene, Genetics, Gene expression, Brain, Human brain, Cerebral cortex


Background Patients with hemophilia A rely on exogenous factor VIII to prevent bleeding in joints, soft tissue, and the central nervous system. Although successful gene transfer has been reported in patients with hemophilia B, the large size of the factor VIII coding region has precluded improved outcomes with gene therapy in patients with hemophilia A. Methods We infused a single intravenous dose of a codon-optimized adeno-associated virus serotype 5 (AAV5) vector encoding a B-domain-deleted human factor VIII (AAV5-hFVIII-SQ) in nine men with severe hemophilia A. Participants were enrolled sequentially into one of three dose cohorts (low dose [one participant], intermediate dose [one participant], and high dose [seven participants]) and were followed through 52 weeks. Results Factor VIII activity levels remained at 3 IU or less per deciliter in the recipients of the low or intermediate dose. In the high-dose cohort, the factor VIII activity level was more than 5 IU per deciliter between weeks 2 and 9 after gene transfer in all seven participants, and the level in six participants increased to a normal value (>50 IU per deciliter) that was maintained at 1 year after receipt of the dose. In the high-dose cohort, the median annualized bleeding rate among participants who had previously received prophylactic therapy decreased from 16 events before the study to 1 event after gene transfer, and factor VIII use for participant-reported bleeding ceased in all the participants in this cohort by week 22. The primary adverse event was an elevation in the serum alanine aminotransferase level to 1.5 times the upper limit of the normal range or less. Progression of preexisting chronic arthropathy in one participant was the only serious adverse event. No neutralizing antibodies to factor VIII were detected. Conclusions The infusion of AAV5-hFVIII-SQ was associated with the sustained normalization of factor VIII activity level over a period of 1 year in six of seven participants who received a high dose, with stabilization of hemostasis and a profound reduction in factor VIII use in all seven participants. In this small study, no safety events were noted, but no safety conclusions can be drawn. (Funded by BioMarin Pharmaceutical; number, NCT02576795 ; EudraCT number, 2014-003880-38 .).

Concepts: Central nervous system, Nervous system, Gene, Virus, Factor VIII


Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers.

Concepts: Nervous system, Brain, Cerebral cortex, Computer, Computation, Computer science, Electrical engineering, Computing


Autism spectrum disorder is a neurodevelopmental disorder of unknown aetiology. It is suggested to involve both genetic susceptibility and environmental factors including in the latter environmental toxins. Human exposure to the environmental toxin aluminium has been linked, if tentatively, to autism spectrum disorder. Herein we have used transversely heated graphite furnace atomic absorption spectrometry to measure, for the first time, the aluminium content of brain tissue from donors with a diagnosis of autism. We have also used an aluminium-selective fluor to identify aluminium in brain tissue using fluorescence microscopy. The aluminium content of brain tissue in autism was consistently high. The mean (standard deviation) aluminium content across all 5 individuals for each lobe were 3.82(5.42), 2.30(2.00), 2.79(4.05) and 3.82(5.17) μg/g dry wt. for the occipital, frontal, temporal and parietal lobes respectively. These are some of the highest values for aluminium in human brain tissue yet recorded and one has to question why, for example, the aluminium content of the occipital lobe of a 15year old boy would be 8.74 (11.59) μg/g dry wt.? Aluminium-selective fluorescence microscopy was used to identify aluminium in brain tissue in 10 donors. While aluminium was imaged associated with neurones it appeared to be present intracellularly in microglia-like cells and other inflammatory non-neuronal cells in the meninges, vasculature, grey and white matter. The pre-eminence of intracellular aluminium associated with non-neuronal cells was a standout observation in autism brain tissue and may offer clues as to both the origin of the brain aluminium as well as a putative role in autism spectrum disorder.

Concepts: Central nervous system, Nervous system, Brain, Human brain, Cerebrum, Skull, Autism, Frontal lobe


Progressive multiple sclerosis (MS) is a severely disabling neurological condition, and an effective treatment is urgently needed. Recently, high-dose biotin has emerged as a promising therapy for affected individuals. Initial clinical data have shown that daily doses of biotin of up to 300 mg can improve objective measures of MS-related disability. In this article, we review the biology of biotin and explore the properties of this ubiquitous coenzyme that may explain the encouraging responses seen in patients with progressive MS. The gradual worsening of neurological disability in patients with progressive MS is caused by progressive axonal loss or damage. The triggers for axonal loss in MS likely include both inflammatory demyelination of the myelin sheath and primary neurodegeneration caused by a state of virtual hypoxia within the neuron. Accordingly, targeting both these pathological processes could be effective in the treatment of progressive MS. Biotin is an essential co-factor for five carboxylases involved in fatty acid synthesis and energy production. We hypothesize that high-dose biotin is exerting a therapeutic effect in patients with progressive MS through two different and complementary mechanisms: by promoting axonal remyelination by enhancing myelin production and by reducing axonal hypoxia through enhanced energy production.

Concepts: Nervous system, Neuron, Action potential, Multiple sclerosis, Neurology, Axon, Myelin, Oligodendrocyte


Here, we report the existence of meningeal lymphatic vessels in human and nonhuman primates (common marmoset monkeys) and the feasibility of noninvasively imaging and mapping them in vivo with high-resolution, clinical MRI. On T2-FLAIR and T1-weighted black-blood imaging, lymphatic vessels enhance with gadobutrol, a gadolinium-based contrast agent with high propensity to extravasate across a permeable capillary endothelial barrier, but not with gadofosveset, a blood-pool contrast agent. The topography of these vessels, running alongside dural venous sinuses, recapitulates the meningeal lymphatic system of rodents. In primates, meningeal lymphatics display a typical panel of lymphatic endothelial markers by immunohistochemistry. This discovery holds promise for better understanding the normal physiology of lymphatic drainage from the central nervous system and potential aberrations in neurological diseases.

Concepts: Inflammation, Central nervous system, Nervous system, Brain, Lymphatic system, Cardiovascular system, Primate