Discover the most talked about and latest scientific content & concepts.

Concept: Nerve growth factor


BACKGROUND: Cognitive impairments are seen in first psychotic episode (FEP) patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF) levels are associated with cognitive impairment in FEP patients compared with healthy controls. METHODS: 45 FEP patients and 45 healthy controls matched by age, gender and educational level were selected from the Basque Country area of Spain. Plasma BDNF levels were assessed in healthy controls and in patients. A battery of cognitive tests was applied to both groups, with the patients being assessed at 6 months after the acute episode and only in those with a clinical response to treatment. RESULTS: Plasma BDNF levels were altered in patients compared with the control group. In FEP patients, we observed a positive association between BDNF levels at six months and five cognitive domains (learning ability, immediate and delayed memory, abstract thinking and processing speed) which persisted after controlling for medications prescribed, drug use, intelligence quotient (IQ) and negative symptoms. In the healthy control group, BDNF levels were not associated with cognitive test scores. CONCLUSION: Our results suggest that BDNF is associated with the cognitive impairment seen after a FEP. Further investigations of the role of this neurotrophin in the symptoms associated with psychosis onset are warranted.

Concepts: Psychology, Psychosis, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Electroconvulsive therapy, Basque Country


Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner’s criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility treatment and future derivation of patient-specific embryonic stem cells.

Concepts: Embryo, Epidermal growth factor, Developmental biology, Stem cell, Embryogenesis, Nerve growth factor, Inner cell mass, Blastocyst


We examined the efficacy of group-based cognitive intervention (GCI) and home-based cognitive intervention (HCI) in amnestic mild cognitive impairment (aMCI) and intervention effects on serum brain-derived neurotrophic factor (BDNF).

Concepts: Randomized controlled trial, Effectiveness, Efficacy, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Mild cognitive impairment


The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF), an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness.

Concepts: Immune system, Signal transduction, Growth factor, Hormone, Pain, Mammal, Nociceptor, Nerve growth factor


Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We observed that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p < 0.001) and greater adiposity in both adult and pediatric cohorts (p values < 0.05). We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype.

Concepts: DNA, Gene, Genetics, Gene expression, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins


This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.

Concepts: Better, Exercise, Hippocampus, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor, Neurotrophins, Health club


It is of vital importance to understand how the foods which are making us fat also act to impair cognition. In this review, we compare the effects of acute and chronic exposure to high-energy diets on cognition and examine the relative contributions of fat (saturated and polyunsaturated) and sugar to these deficits. Hippocampal-dependent memory appears to be particularly vulnerable to the effects of high-energy diets and these deficits can occur rapidly and prior to weight gain. More chronic diet exposure seems necessary however to impair other sorts of memory. Many potential mechanisms have been proposed to underlie diet-induced cognitive decline and we will focus on inflammation and the neurotrophic factor, brain-derived neurotrophic factor (BDNF). Finally, given supplementation of diets with omega-3 and curcumin has been shown to have positive effects on cognitive function in healthy ageing humans and in disease states, we will discuss how these nutritional interventions may attenuate diet-induced cognitive decline. We hope this approach will provide important insights into the causes of diet-induced cognitive deficits, and inform the development of novel therapeutics to prevent or ameliorate such memory impairments.

Concepts: Psychology, Nutrition, Cognitive psychology, Cognition, Saturated fat, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor


Cell behavior patterns that lead to distinct tissue or capillary phenotypes are difficult to identify using existing approaches. We present a strategy to characterize the form, frequency, magnitude and sequence of human endothelial cell activity when stimulated by vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). We introduce a “Rules-as-Agents” method for rapid comparison of cell behavior hypotheses to in vitro angiogenesis experiments. Endothelial cells are represented as machines that transition between finite behavior states, and their properties are explored by a search algorithm. We rank and quantify differences between competing hypotheses about cell behavior during the formation of unique capillary phenotypes. Results show the interaction of tip and stalk endothelial cells, and predict how migration, proliferation, branching, and elongation integrate to form capillary structures within a 3D matrix in the presence of varying VEGF and BDNF concentrations. This work offers the ability to understand - and ultimately control - human cell behavior at the microvasculature level.

Concepts: Angiogenesis, Blood vessel, Capillary, Vascular endothelial growth factor, Endothelium, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor


Evidence is accumulating that many memory disorders, including those due to neurodegenerative diseases, traumatic brain injury (TBI), vascular disease, or abnormal brain development, share common features of memory-related pathology. Structural and functional deficits of synapses are at the core of the underlying pathophysiology, constituting a critical point of convergence in memory disorders. Memory therapeutics that target synaptic loss and dysfunction - that is, to slow, halt, or reverse progression of the disorders at the level of synapses, via synaptogenic molecular cascades such as those of protein kinase C (PKC) and brain-derived neurotrophic factor (BDNF) - possess universal therapeutic value for many forms of memory disorder. They may be useful either as standalone interventions for patients with memory disorders or as adjuncts to drugs that target the underlying pathology.

Concepts: Medicine, Signal transduction, Traumatic brain injury, Neuroscience, Protein kinase, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor


Severe cognitive deficits are a frequent outcome of both neurodegenerative and neurodevelopmental disorders. In the attempt to define new clinical biomarkers, current research trends aim at the identification of common molecular features in these pathologies rather than searching for differences. Brain-derived neurotrophic factor (BDNF) has attracted great interest as possible biomarker because of its key role in synaptic remodeling during cognitive processes. BDNF undergoes proteolytic processing and studies in animal models have highlighted that different forms of learning and memory require either the proBDNF precursor or the mature BDNF form. Significantly, an altered expression of BDNF forms was found in postmortem brains and serum from patients with schizophrenia, Alzheimer’s disease and mood disorders. Based on these studies, this review puts forward the hypothesis that abnormalities in proBDNF or mBDNF biosynthesis may correspond to different cognitive dysfunctions in these brain diseases, while the role of truncated BDNF remains unknown.

Concepts: Psychology, Brain, Cognition, Memory, Dementia, Neurotrophin, Brain-derived neurotrophic factor, Nerve growth factor