SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Nephron

197

Abatacept (cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin fusion protein [CTLA-4-Ig]) is a costimulatory inhibitor that targets B7-1 (CD80). The present report describes five patients who had focal segmental glomerulosclerosis (FSGS) (four with recurrent FSGS after transplantation and one with primary FSGS) and proteinuria with B7-1 immunostaining of podocytes in kidney-biopsy specimens. Abatacept induced partial or complete remissions of proteinuria in these patients, suggesting that B7-1 may be a useful biomarker for the treatment of some glomerulopathies. Our data indicate that abatacept may stabilize β1-integrin activation in podocytes and reduce proteinuria in patients with B7-1-positive glomerular disease.

Concepts: Nephron, Glomerulus, Protein, Proteinuria, CTLA-4, Glomerulosclerosis, Nephrotic syndrome, Focal segmental glomerulosclerosis

167

Juxtaglomerular neurons represent one of the largest cellular populations in the mammalian olfactory bulb yet their role for signal processing remains unclear. We used two-photon imaging and electrophysiological recordings to clarify the properties of these cells and their functional organization in the juxtaglomerular space. Juxtaglomerular neurons coded for many perceptual characteristics of the olfactory stimulus such as (1) identity of the odorant, (2) odorant concentration, (3) odorant onset, and (4) offset. The odor-responsive neurons clustered within a narrow area surrounding the glomerulus with the same odorant specificity, with ~80% of responding cells located ≤20 μm from the glomerular border. This stereotypic spatial pattern of activated cells persisted at different odorant concentrations and was found for neurons both activated and inhibited by the odorant. Our data identify a principal glomerulus with a narrow shell of juxtaglomerular neurons as a basic odor coding unit in the glomerular layer and underline the important role of intraglomerular circuitry.

Concepts: Olfactory receptor neuron, Potassium, Nephron, Action potential, Odor, Olfaction, Olfactory system, Olfactory bulb

164

Renal proximal tubular epithelial cells play a central role in renal physiology and are among the cell types most sensitive to ischemia and xenobiotic nephrotoxicity. In order to investigate the molecular and cellular mechanisms underlying the pathophysiology of kidney injuries, a stable and well-characterized primary culture model of proximal tubular cells is required. An existing model of proximal tubular cells is hampered by the cellular heterogeneity of kidney; a method based on cell sorting for specific markers must therefore be developed. In this study, we present a primary culture model based on the mechanical and enzymatic dissociation of healthy tissue obtained from nephrectomy specimens. Renal epithelial cells were sorted using co-labeling for CD10 and CD13, two renal proximal tubular epithelial markers, by flow cytometry. Their purity, phenotypic stability and functional properties were evaluated over several passages. Our results demonstrate that CD10/CD13 double-positive cells constitute a pure, functional and stable proximal tubular epithelial cell population that displays proximal tubule markers and epithelial characteristics over the long term, whereas cells positive for either CD10 or CD13 alone appear to be heterogeneous. In conclusion, this study describes a method for establishing a robust renal proximal tubular epithelial cell model suitable for further experimentation.

Concepts: Renal cortex, Renal pelvis, Skin, Nephron, Flow cytometry, Epithelium, Cell biology, Kidney

136

Rac1, a Rho family member, is ubiquitously expressed and participates in various biological processes. Rac1 expression is induced early in podocyte injury, but its role in repair is unclear. To investigate the role of Rac1 expression in podocytes under pathological conditions, we used podocyte-specific Rac1 conditional knock-out (cKO) mice administered adriamycin (ADR), which causes nephrosis and glomerulosclerosis. Larger areas of detached podocytes, more adhesion of the GBM to Bowman’s capsule, and a higher ratio of sclerotic glomeruli were observed in Rac1 cKO mice than in control mice, whereas no differences were observed in glomerular podocyte numbers in both groups after ADR treatment. The mammalian target of rapamycin (mTOR) pathway, which regulates the cell size, was more strongly suppressed in the podocytes of Rac1 cKO mice than in those of control mice under pathological conditions. In accordance with this result, the volumes of podocytes in Rac1 cKO mice were significantly reduced compared with those of control mice. Experiments using in vitro ADR-administered Rac1 knockdown podocytes also supported that a reduction in Rac1 suppressed mTOR activity in injured podocytes. Taken together, these data indicate that Rac1-associated mTOR activation in podocytes plays an important role in preventing the kidneys from developing glomerulosclerosis.

Concepts: Metanephric blastema, Proximal convoluted tubule, Kidney anatomy, Renal corpuscle, Nephron, Podocyte, Bowman's capsule, Glomerulus

136

Clinical and experimental studies have shown that sodium glucose co-transporter 2 inhibitors (SGLT2i) contribute to the prevention of diabetic kidney disease progression. In order to clarify its pharmacological effects on the molecular mechanisms underlying the development of diabetic kidney disease, we administered different doses of the SGLT2i, ipragliflozin, to type 2 diabetic mice. A high-dose ipragliflozin treatment for 8 weeks lowered blood glucose levels and reduced urinary albumin excretion. High- and low-dose ipragliflozin both inhibited renal and glomerular hypertrophy, and reduced NADPH oxidase 4 expression and subsequent oxidative stress. Analysis of glomerular phenotypes using glomeruli isolation demonstrated that ipragliflozin preserved podocyte integrity and reduced oxidative stress. Regarding renal tissue hypoxia, a short-term ipragliflozin treatment improved oxygen tension in the kidney cortex, in which SGLT2 is predominantly expressed. We then administered ipragliflozin to type 1 diabetic mice and found that high- and low-dose ipragliflozin both reduced urinary albumin excretion. In conclusion, we confirmed dose-dependent differences in the effects of ipragliflozin on early diabetic nephropathy in vivo. Even low-dose ipragliflozin reduced renal cortical hypoxia and abnormal hemodynamics in early diabetic nephropathy. In addition to these effects, high-dose ipragliflozin exerted renoprotective effects by reducing oxidative stress in tubular epithelia and glomerular podocytes.

Concepts: Podocyte, Blood sugar, Glucose, Kidney transplantation, Nephron, Glomerulus, Diabetic nephropathy, Kidney

66

Human pluripotent stem cells (hPSCs) hold great promise for understanding kidney development and disease. We reproducibly differentiated three genetically distinct wild-type hPSC lines to kidney precursors that underwent rudimentary morphogenesis in vitro. They expressed nephron and collecting duct lineage marker genes, several of which are mutated in human kidney disease. Lentiviral-transduced hPSCs expressing reporter genes differentiated similarly to controls in vitro. Kidney progenitors were subcutaneously implanted into immunodeficient mice. By 12 weeks, they formed organ-like masses detectable by bioluminescence imaging. Implants included perfused glomeruli containing human capillaries, podocytes with regions of mature basement membrane, and mesangial cells. After intravenous injection of fluorescent low-molecular-weight dextran, signal was detected in tubules, demonstrating uptake from glomerular filtrate. Thus, we have developed methods to trace hPSC-derived kidney precursors that formed functioning nephrons in vivo. These advances beyond in vitro culture are critical steps toward using hPSCs to model and treat kidney diseases.

Concepts: Podocyte, Distal convoluted tubule, Kidney anatomy, Bowman's capsule, Renal corpuscle, Glomerulus, Nephron, Kidney

39

Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.

Concepts: Basement membrane, Renal pelvis, Nephrotoxicity, Organ, Skin, Nephron, Extracellular matrix, Kidney

36

Lithium is a widely used and highly effective treatment for mood disorders, but causes poorly characterised adverse effects in kidney and endocrine systems. We aimed to analyse laboratory information system data to determine the incidence of renal, thyroid, and parathyroid dysfunction associated with lithium use.

Concepts: Retrospective, Systems theory, Parathyroid gland, Renin-angiotensin system, Nephron, Kidney, Thyroid, Endocrine system

28

Vasopressin modulates sodium reabsorption in the collecting duct through adenylyl cyclase-stimulated cyclic AMP, which exists as multiple isoforms; the specific isoform involved in vasopressin-stimulated sodium transport is unknown. To assess this, we studied mice deficient in adenylyl cyclase type VI specifically in the principal cells of the collecting duct. Knockout mice had increased urine volume and reduced urine sodium concentration, but regardless of the level of sodium intake, they did not exhibit significant alterations in urinary sodium excretion, arterial pressure, or pulse rate. Plasma renin concentration was elevated in knockout mice, however, suggesting a compensatory response. Valsartan significantly reduced arterial pressure in knockout mice but not in controls. Knockout mice had decreased renal cortical mRNA content of all three epithelial sodium channel (ENaC) isoforms, and total cell sodium channel isoforms α and γ were reduced in these animals. Patch-clamp analysis of split-open cortical collecting ducts revealed no difference in baseline activity of sodium channels, but knockout mice had abolished vasopressin-stimulated ENaC open probability and apical membrane channel number. In summary, these data suggest that adenylyl cyclase VI mediates vasopressin-stimulated ENaC activity in the kidney.

Concepts: Renin, Collecting duct system, Renal physiology, Nephron, Aldosterone, Blood pressure, Sodium, Kidney

28

Background: Tissue engineering of functional kidney tissue is an important goal for clinical restoration of renal function in patients damaged by infectious, toxicological, or genetic disease. One promising approach is the use of the self-organizing abilities of embryonic kidney cells to arrange themselves, from a simply reaggregated cell suspension, into engineered organs similar to fetal kidneys. The previous state-of-the-art method for this results in the formation of a branched collecting duct tree, immature nephrons (S-shaped bodies) beside and connected to it, and supportive stroma. It does not, though, result in the significant formation of morphologically detectable loops of Henle - anatomical features of the nephron that are critical to physiological function. Methods: We have combined the best existing technique for renal tissue engineering from cell suspensions with a low-volume culture technique that allows intact kidney rudiments to make loops of Henle to test whether engineered kidneys can produce these loops. Results: The result is the formation of loops of Henle in engineered cultured ‘fetal kidneys’, very similar in both morphology and in number to those formed by intact organ rudiments. Conclusion: This brings the engineering technique one important step closer to production of a fully realistic organ.

Concepts: Renal corpuscle, Electrolyte, Nephrology, Renal physiology, Loop of Henle, Organ, Nephron, Kidney