SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Neoteny

26

The axolotl Ambystoma mexicanum is one of the most commonly used model organisms in developmental and regenerative studies because it can reconstitute what is believed to be a completely normal anatomical and functional forelimb/hindlimb after amputation. However, to date it has not been confirmed whether each regenerated forelimb muscle is really a “perfect” copy of the original muscle. This study describes the regeneration of the arm, forearm, hand, and some pectoral muscles (e.g., coracoradialis) in transgenic axolotls that express green fluorescent protein (GFP) in muscle fibers. The observations found that: (1) there were muscle anomalies in 43% of the regenerated forelimbs; (2) however, on average in each regenerated forelimb there are anomalies in only 2.5% of the total number of muscles examined, and there were no significant differences observed in the specific insertion and origin of the other muscles analyzed; (3) one of the most notable and common anomalies (seen in 35% of the regenerated forelimbs) was the presence of a fleshy coracoradialis at the level of the arm; this is a particularly outstanding configuration because in axolotls and in urodeles in general this muscle only has a thin tendon at the level of the arm, and the additional fleshy belly in the regenerated arms is strikingly similar to the fleshy biceps brachii of amniotes, suggesting a remarkable parallel between a regeneration defect and a major phenotypic change that occurred during tetrapod limb evolution; (4) during forelimb muscle regeneration there was a clear proximo-distal and radio-ulnar morphogenetic gradient, as seen in normal development, but also a ventro-dorsal gradient in the order of regeneration, which was not previously described in the literature. These results have broader implications for regenerative, evolutionary, developmental and morphogenetic studies. Anat Rec, 2014. © 2014 Wiley Periodicals, Inc.

Concepts: Developmental biology, Muscle, Regeneration, Biceps brachii muscle, Axolotl, Salamander, Mole salamander, Neoteny

14

The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP), to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

Concepts: Protein, Green fluorescent protein, Regeneration, Musical form, Axolotl, Mole salamanders, Mole salamander, Neoteny

0

Maternal effects, the influences of maternal phenotype on the phenotypes of her offspring, mediate early ontogenetic traits through maternal investment. In amphibians, provisioning eggs with yolk is the main source of maternal investment. While larger eggs generally result in larger, higher-quality offspring, the relationship between egg size and offspring phenotype is complicated because offspring can evolve to be more or less responsive to variation in yolk provisions. Previous studies of several ambystomatid salamanders suggest that the effects of embryonic yolk reserve reduction on hatchling life history traits increase with egg size. In this study, a similar controlled experimental yolk removal technique in Ambystoma mexicanum was used to determine the effects of reduced yolk reserves on phenotypes including hatching time and stage, hatchling and larval size and performance in predation trials with fish. Surprisingly, yolk reduction revealed no effects on any traits. These findings suggest that larval morphology in A. mexicanum is highly canalized and larval phenotypes are decoupled from yolk reserve variation. This surprising lack of yolk removal effects in hatchling and larval axolotls illustrates the evolutionary flexibility of early life history traits. Traits can evolve to increase or decrease their response to resources and can even become completely unresponsive. Since we found no effects in early life history, we hypothesize that domestication of the axolotl may have altered yolk properties or allocation dynamics and that maternal investment in yolk reserves may manifest at later life stages by reducing the time to reproductive maturity or increasing fecundity.

Concepts: Gene, Evolution, Redox, Regeneration, Phenotype, Axolotl, Mole salamander, Neoteny

0

Limb regeneration involves several interrelated physiological processes in which a particular signalling pathway may play a variety of functions. Blocking the function of Wnt/β-catenin signalling during limb regeneration inhibits regeneration in axolotls (Ambystoma mexicanum). Limb development shares many features with limb regeneration, and Wnt/β-catenin activation has different effects depending on the developmental stage. The aim of this study was to evaluate whether Wnt/β-catenin signalling activation during axolotl limb regeneration has different effects when activated at different stages of regeneration. To evaluate this hypothesis, we treated amputated axolotls with a Wnt agonist chemical at different stages of limb regeneration. The results showed that limb regeneration was inhibited when the treatment began before blastema formation. Under these conditions, blastema formation was hindered, possibly due to the lack of innervation. On the other hand, when axolotls were treated after blastema formation and immediately before the onset of morphogenesis, we observed structural disorganization in skeletal formation. In conclusion, we found that limb regeneration was differentially affected depending on the stage at which the Wnt signalling pathway was activated.

Concepts: Developmental biology, Cellular differentiation, Regeneration, Wnt signaling pathway, Axolotl, Mole salamanders, Mole salamander, Neoteny

0

Plasticity in life history strategies can be advantageous for species that occupy spatially or temporally variable environments. We examined how phenotypic plasticity influences responses of the mole salamander, Ambystoma talpoideum, to disturbance events at the St. Marks National Wildlife Refuge (SMNWR), FL, USA from 2009 to 2014. We observed periods of extensive drought early in the study, in contrast to high rainfall and expansive flooding events in later years. Flooding facilitated colonization of predatory fishes to isolated wetlands across the refuge. We employed multistate occupancy models to determine how this natural experiment influenced the occurrence of aquatic larvae and paedomorphic adults and what implications this may have for the population. We found that, in terms of occurrence, responses to environmental variation differed between larvae and paedomorphs, but plasticity (i.e. the ability to metamorphose rather than remain in aquatic environment) was not sufficient to buffer populations from declining as a result of environmental perturbations. Drought and fish presence negatively influenced occurrence dynamics of larval and paedomorphic mole salamanders and, consequently, contributed to observed short-term declines of this species. Overall occurrence of larval salamanders decreased from 0.611 in 2009 to 0.075 in 2014 and paedomorph occurrence decreased from 0.311 in 2009 to 0.121 in 2014. Although variation in selection pressures has likely maintained this polyphenism previously, our results suggest that continued changes in environmental variability and the persistence of fish in isolated wetlands could lead to a loss of paedomorphosis in the SMNWR population and, ultimately, impact regional persistence in the future.

Concepts: Developmental biology, Larva, Fish, Salamander, Mole salamanders, Mole salamander, Neoteny, Salamandroidea

0

Axolotls (Ambystoma mexicanum) may heal their skin wounds scar-free in both paedomorphs and metamorphs. In previous studies on small punch skin wounds, rapid re-epithelialisation was noted in these two axolotl morphs. However, large wound size in mammals may affect wound healing. In this study, large circumferential full thickness excision wounds on the hind limbs were created on juvenile paedomorphic and metamorphic axolotls. The results showed re-epithelialisation was more quickly initiated in paedomorphs than in metamorphs after wounding. The migrating rate of epidermis on the wound bed was faster in paedomorphs than in metamorphs and thus completion of re-epithelialisation was faster in paedomorphs than in metamorphs. Within these re-epithelialisation periods, neither basement membrane nor dermis was reformed. Epidermal cell proliferation was detected by EdU-labelling technique. In the normal unwounded skin, epidermal proliferation rate was higher in paedomorphs than in metamorphs. After wounding, the epidermal proliferation rate was significantly lower in the migrating front on the wound bed than in the normal skin in paedomorphs. The EdU-labelling rate between normal skin and migration front was not different in metamorphs. Lacking of more proliferating epidermal cells on the wound bed indicated that the new epidermis here derived rather from migrating epidermal cells than from cell proliferation in situ. In conclusion, re-epithelialisation in the large wound might be fully completed in both morphs despite it was initiated earlier and with faster rate in paedomorphs than in metamorphs. The new epidermis on the wound bed derived mainly from cell migration than by cell proliferation in the re-epithelialisation period. J. Morphol., 2016. © 2016 Wiley Periodicals, Inc.

Concepts: Wound healing, Skin, Wound, Traumatology, Chronic wound, Axolotl, Mole salamander, Neoteny

0

Axolotl (Ambystoma Mexicanum) has been emerging as a promising model in stem cell and regeneration researches due to its exceptional regenerative capacity. Although it represents lifelong lasting neoteny, induction to metamorphosis with thyroid hormones (THs) treatment advances the utilization of Axolotl in various studies. It has been reported that amphibians undergo anatomical and histological remodeling during metamorphosis and this transformation is crucial for adaptation to terrestrial conditions. However, there is no comprehensive histological investigation regarding the morphological alterations of Axolotl organs and tissues throughout the metamorphosis. Here, we reveal the histological differences or resemblances between the neotenic and metamorphic axolotl tissues. In order to examine structural features and cellular organization of Axolotl organs, we performed Hematoxylin & Eosin, Luxol-Fast blue, Masson’s trichrome, Alcian blue, Orcein and Weigart’s staining. Stained samples from brain, gallbladder, heart, intestine, liver, lung, muscle, skin, spleen, stomach, tail, tongue and vessel were analyzed under the light microscope. Our findings contribute to the validation of the link between newly acquired functions and structural changes of tissues and organs as observed in tail, skin, gallbladder and spleen. We believe that this descriptive work provides new insights for a better histological understanding of both neotenic and metamorphic Axolotl tissues.

Concepts: Biology, Developmental biology, Regeneration, Histology, Organ, Organs, Axolotl, Neoteny

0

Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability.

Concepts: Nervous system, Neuron, Regeneration, Axon, Fibroblast growth factor, Axolotl, Mole salamander, Neoteny

0

Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation.

Concepts: Regeneration, Vertebra, Vertebrate, Axolotl, Mole salamanders, Mole salamander, Neoteny

0

Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and ‘salamander A’) has been generally described as having paedomorphic features (i.e. the presence of Katschenko’s Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions.

Concepts: Bone, Bone marrow, Skeletal system, Epiphyseal plate, Amphibian, Lissamphibia, Salamander, Neoteny