Discover the most talked about and latest scientific content & concepts.

Concept: Nematode


Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

Concepts: Cell, Bacteria, Arthropod, Caenorhabditis elegans, Nematode, Model organism, Nematodes, Heterodera


Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annually. An effective plant defence against pathogens relies on the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localised receptors leading to the activation of PAMP-triggered immunity (PTI). Extensive studies have been conducted to characterise the role of PTI in various models of plant-pathogen interactions. However, far less is known about the role of PTI in roots in general and in plant-nematode interactions in particular. Here we show that nematode-derived proteinaceous elicitor/s is/are capable of inducing PTI in Arabidopsis in a manner dependent on the common immune co-receptor BAK1. Consistent with the role played by BAK1, we identified a leucine-rich repeat receptor-like kinase, termed NILR1 that is specifically regulated upon infection by nematodes. We show that NILR1 is essential for PTI responses initiated by nematodes and nilr1 loss-of-function mutants are hypersusceptible to a broad category of nematodes. To our knowledge, NILR1 is the first example of an immune receptor that is involved in induction of basal immunity (PTI) in plants or in animals in response to nematodes. Manipulation of NILR1 will provide new options for nematode control in crop plants in future.

Concepts: Immune system, Protein, Signal transduction, Innate immune system, Nematode, Receptor, Immunity, Pattern recognition receptor


Eosinophil accumulation is a defining feature of the immune response to parasitic worm infection. Tissue-resident cells, such as epithelial cells, are thought to initiate eosinophil recruitment. However, direct recognition of worms by eosinophils has not been explored as a mechanism for amplifying eosinophil accumulation. Here, we report that eosinophils rapidly migrate toward diverse nematode species in three-dimensional culture. These include the mammalian parasite Nippostrongylus brasiliensis and the free-living nematode Caenorhabditis elegans. Surprisingly, collective migration toward worms requires paracrine leukotriene B4 signaling between eosinophils. In contrast, neutrophils show a minimal response to nematodes, yet are able to undergo robust leukotriene-dependent migration toward IgG-coated beads. We further demonstrate that eosinophils accumulate around C. elegans in the lungs of mice. This response is not dependent on bacterial products, CCR3, or complement activation. However, mice deficient in leukotriene signaling show markedly attenuated eosinophil accumulation after injection of C. elegans or N. brasiliensis. Our findings establish that nematode-derived signals can directly induce leukotriene production by eosinophils and that leukotriene signaling is a major contributor to nematode-induced eosinophil accumulation in the lung. The similarity of the eosinophil responses to diverse nematode species suggests that conserved features of nematodes are recognized during parasite infection.

Concepts: Immune system, Bacteria, Asthma, Caenorhabditis elegans, Caenorhabditis, Nematode, Model organism, Sydney Brenner


Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms.

Concepts: Nervous system, Psychology, Neuron, Genome, Caenorhabditis elegans, Animal, Nematode, Model organism


Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology.

Concepts: Human, Caenorhabditis elegans, Caenorhabditis, Nematode, Model organism, Rhabditidae, Signal, Sensory system


The sensitivity of larval paralysis assay (LPA) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide-formazan (MTT-formazan) assay was compared to evaluate the anthelmintic activity of plant extracts. In this study, the methanolic extract of Azadirachta indica (neem) was evaluated for its activity against the infective-stage larvae (L(3)) of susceptible and resistant Haemonchus contortus strains using the two aforementioned assays. In both in vitro assays, the same serial concentrations of the extract were used, and the median lethal concentrations were determined to compare the sensitivity of both assays. The results revealed a significant difference (P < 0.05) in the sensitivity of the LPA and the MTT-formazan assay. The MTT-formazan assay is more feasible for practical applications because it measured the L(3) mortality more accurately than LPA. This study may help find a suitable assay for investigating the anthelmintic activity of plant extracts against trichostrongylid nematodes.

Concepts: Parasites, Nematode, Nematodes, Annelid, Haemonchus contortus, Neem, Meliaceae, Azadirachta


Learning is widespread in the animal kingdom. From the small nematode worm Caenorhabditis elegans to humans, learning appears to play a central role in adaptation to local spatial and temporal environmental conditions. Though the neurobiological mechanisms of learning and memory have been intensively studied, the function and adaptive significance of learning has only recently received interest. Using learning, animals may progressively adjust their behavior in response to new environmental conditions, suggesting benefits of learning on animal performance, at least in the short term. How does learning affect the overall fitness of an animal? What are the fitness benefits and costs of learning? How can we explain the natural variation in learning ability observed between individuals, between populations of the same species or between closely related species? What are the ecological circumstances that favor the evolution of learning? There are all emerging questions that are central to a better understanding of the evolution of cognition and animal adaptation. Here I review the recent evidence showing that learning and memory are molded by an animal’s lifestyle within its ecological niche.

Concepts: Psychology, Natural selection, Evolution, Biology, Caenorhabditis elegans, Animal, Nematode, Model organism


SUMMARY The potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis are major pests of potatoes. The G. pallida (and G. rostochiensis) life cycle includes both diapause and quiescent stages. Nematodes in dormancy (diapause or quiescent) are adapted for long-term survival and are more resistant to nematicides. This study analysed the mechanisms underlying diapause and quiescence. The effects of several compounds (8Br-cGMP, oxotremorine and atropine) on the activation of hatching were studied. The measurements of some morphometric parameters in diapaused and quiescent eggs after exposure to PRD revealed differences in dorsal gland length, subventral gland length and dorsal gland nucleolus. In addition, the expression of 2 effectors (IVg9 and cellulase) was not induced in diapaused eggs in water or PRD, while expression was slightly induced in quiescent eggs. Finally, we performed a comparative study to identify orthologues of C. elegans diapause related genes in plant-parasitic nematodes (G. pallida, Meloidogyne incognita, M. hapla and Bursaphelenchus xylophilus). This analysis suggested that it was not possible to identify G. pallida orthologues of the majority of C. elegans genes involved in the control of dauer formation. All these data suggest that G. pallida may use different mechanisms to C. elegans in regulating the survival stage.

Concepts: Parasites, RNA, Caenorhabditis elegans, Nematode, Model organism, Nematodes, Plant pathogens and diseases, Potato cyst nematode


The resistance of gastrointestinal nematodes to anthelmintics has increased the need to evaluate natural products that can replace or assist current strategies to control gastrointestinal nematodes. The objective of this study was to evaluate the effect of decoctions of Lantana camara (DLc), Alpinia zerumbet (DAz), Mentha villosa (DMv) and Tagetes minuta (DTm) on Haemonchus contortus by two in vitro tests. The effects of increasing concentrations of lyophilized decoctions (0.31 to 10mg/ml) were assessed using the egg hatch test (EHT). The decoctions were then tested in the larval artificial exsheathment assay. H. contortus third stage larvae (L3) were exposed to 0.31mg/ml A. zerumbet and M. villosa decoctions and 0.62mg/ml T. minuta and L. camara decoctions for 3h and then exsheathment procedure at 10min intervals. An inhibitor of tannins, polyvinyl polypyrrolidone (PVPP), was used to study if tannins were responsible for the inhibitory effect on hatching and exsheathment of larvae. A. zerumbet, M. villosa and T. minuta showed a dose-dependent effect in the EHT, which did not disappear after the addition of PVPP. No effect was observed for L. camara in the EHT. However, the decoctions inhibited the process of larval exsheathment, which may be related to tannin action because the addition of PVPP reversed the inhibitory effect. A. zerumbet, M. villosa and T. minuta decoctions showed inhibitory activity on H. contortus larvae hatching and exsheathing. The decoctions of these plants could be used to control gastrointestinal nematodes following confirmation of their anthelmintic activity in vivo.

Concepts: Nematode, In vivo, In vitro, Haemonchus contortus, Zingiberaceae, Alpinia, Alpinia zerumbet, Tagetes minuta


Pinworms (Nematoda: Oxyurida) are common contaminants in most laboratory rodent colonies. The aim of the study was to monitor the transmission of Syphacia muris eggs in laboratory rat breeding facilities. Dust in a breeding room was investigated using special grids (free fallout, or through the help suction chamber). Furthermore, the ventilation system, breeding cages and the hands of the laboratory technical staff were examined. In the case of free fallout, the percentage of positive grids increased slightly over time: from 5.5% (after 24 h) to 8.2% (72 h). Similar values were also found when using the suction chamber (7.6%). Many more pinworm eggs were found in samples collected every second month from suction holes of the ventilation system (28.7%). One-half of the samples taken from the breeding cages (before washing) exhibited pinworm eggs (50.8%). Examination of the hands of technical staff showed positive detection in 37.9% of cases. In this study, certain transmission factors (dust, unclean cages and technicians) were proved to be significant in the distribution of pinworm infection in laboratory rodent facilities.

Concepts: Parasites, Nematode, Nematodes, Rat, Pinworm, Oxyurida, Oxyuridae, Autoinfection