SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Nanowire battery

214

Improving one property without sacrificing others is challenging for lithium-ion batteries due to the trade-off nature among key parameters. Here we report a chemical vapor deposition process to grow a graphene-silica assembly, called a graphene ball. Its hierarchical three-dimensional structure with the silicon oxide nanoparticle center allows even 1 wt% graphene ball to be uniformly coated onto a nickel-rich layered cathode via scalable Nobilta milling. The graphene-ball coating improves cycle life and fast charging capability by suppressing detrimental side reactions and providing efficient conductive pathways. The graphene ball itself also serves as an anode material with a high specific capacity of 716.2 mAh g(-1). A full-cell incorporating graphene balls increases the volumetric energy density by 27.6% compared to a control cell without graphene balls, showing the possibility of achieving 800 Wh L(-1) in a commercial cell setting, along with a high cyclability of 78.6% capacity retention after 500 cycles at 5C and 60 °C.

Concepts: Density, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Nanowire battery, Energy density, Nickel-cadmium battery

170

New energy industry including electric vehicles and large-scale energy storage in smart grids requires energy storage systems of good safety, high reliability, high energy density and low cost. Here a coated Li metal is used as anode for an aqueous rechargeable lithium battery (ARLB) combining LiMnO as cathode and 0.5 mol l LiSO aqueous solution as electrolyte. Due to the “cross-over” effect of Li ions in the coating, this ARLB delivers an output voltage of about 4.0 V, a big breakthrough of the theoretic stable window of water, 1.229 V. Its cycling is very excellent with Coulomb efficiency of 100% except in the first cycle. Its energy density can be 446 Wh kg, about 80% higher than that for traditional lithium ion battery. Its power efficiency can be above 95%. Furthermore, its cost is low and safety is much reliable. It provides another chemistry for post lithium ion batteries.

Concepts: Cathode, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Nanowire battery, Energy storage

52

Lithium metal has been regarded as the future anode material for high-energy-density rechargeable batteries due to its favorable combination of negative electrochemical potential and high theoretical capacity. However, uncontrolled lithium deposition during lithium plating/stripping results in low Coulombic efficiency and severe safety hazards. Herein, we report that nanodiamonds work as an electrolyte additive to co-deposit with lithium ions and produce dendrite-free lithium deposits. First-principles calculations indicate that lithium prefers to adsorb onto nanodiamond surfaces with a low diffusion energy barrier, leading to uniformly deposited lithium arrays. The uniform lithium deposition morphology renders enhanced electrochemical cycling performance. The nanodiamond-modified electrolyte can lead to a stable cycling of lithium | lithium symmetrical cells up to 150 and 200 h at 2.0 and 1.0 mA cm(-2), respectively. The nanodiamond co-deposition can significantly alter the lithium plating behavior, affording a promising route to suppress lithium dendrite growth in lithium metal-based batteries.Lithium metal is an ideal anode material for rechargeable batteries but suffer from the growth of lithium dendrites and low Coulombic efficiency. Here the authors show that nanodiamonds serve as an electrolyte additive to co-deposit with lithium metal and suppress the formation of dendrites.

Concepts: Electrochemistry, Battery, Electrode, Electrolysis, Rechargeable battery, Lithium-ion battery, Lithium, Nanowire battery

43

Herein, facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNSs) is achieved via a simple and scalable surface-protected magnesiothermic reduction with subsequent chemical vapor deposition (CVD) process. Li-ion batteries (LIBs) were fabricated to test the utility of MSNSs as an anode material. LIB anodes based on MSNSs demonstrate a high reversible capacity of 3207 mAh g(-1), superior rate performance, and excellent cycling stability. Furthermore, the performance of full cell LIBs was evaluated by using MSNS anode and a LiCoO2 cathode with practical electrode loadings. The MSNS/LiCoO2 full cell demonstrates high gravimetric energy density in the order of 850 Wh L(-1) with excellent cycling stability. This work shows a proof of concept of the use of monodisperse Si and C nanocomposite spheres toward practical lithium-ion battery applications.

Concepts: Battery, Electrolysis, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Nanowire battery, Silver-oxide battery

28

The other polymorph: A vapor-phase route for the fabrication of β-Fe(2) O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the β polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability.

Concepts: Battery, Electrolysis, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery, Nanowire battery

27

Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

Concepts: Electron, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery, Nanowire battery

27

A Si/graphene composite is drop-casted on an ultrathin-graphite foam (UGF) with three dimensional conductive network. The Si/graphene/UGF composite presents excellent stability and relatively high overall capacity when tested as an anode for rechargeable lithium ion batteries.

Concepts: Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery, Nanowire battery, Nickel-metal hydride battery, Nickel-cadmium battery

27

Down to the wire: Three-dimensional interconnected Si-based nanowires are produced through the combination of thermal decomposition of SiO and a metal-catalyzed nanowire growth process. This low-cost and scalable approach provides a promising candidate for high-capacity anodes in lithium-ion batteries.

Concepts: Nanowire, Rechargeable battery, Lithium-ion battery, Lithium-ion polymer battery, Nanowire battery, Nickel-metal hydride battery, Nickel-cadmium battery, Lithium iron phosphate battery

27

Spinel-type LiNi0.5Mn1.5O4 porous nanorods assembled with nanoparticles have been prepared and investigated as high-rate and long-life cathode materials for rechargeable lithium-ion batteries. One dimensional porous nanostructures of LiNi0.5Mn1.5O4 with ordered P4332 phase were obtained through solid-state Li and Ni implantation of porous Mn2O3 nanorods that resulted from thermal decomposition of the chain-like MnC2O4 precursor. The fabricated LiNi0.5Mn1.5O4 delivered specific capacities of 140 and 109 mAh g-1 at 1 C and 20 C rate, respectively. At 5 C cycling rate, a capacity retention of 91% was sustained after 500 cycles, with extremely low capacity fade (< 1%) during the initial 300 cycles. The remarkable performance was attributed to the porous 1D nanostructures that can accommodate strain relaxation by slippage at the subunits wall boundaries and provide short Li-ion diffusion distance along the confined dimension.

Concepts: Rechargeable battery, Lithium-ion battery, Lithium, Lithium-ion polymer battery, Nanowire battery, Nickel-metal hydride battery, Nickel-cadmium battery, Lithium iron phosphate battery

27

Uniform Li(4) Ti(5) O(12) hollow spheres with mesoporous shells of tuneable thickness have been synthesized by an efficient templating approach. Owing to the unique hollow structure and highly mesoporous framework, these Li(4) Ti(5) O(12) hollow spheres exhibit remarkable high-rate performance and long-term cycling stability when evaluated as anode materials for lithium-ion batteries.

Concepts: Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery, Nanowire battery, Lithium-ion batteries