SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Nanocrystalline silicon

170

A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H2O2. The quality of the pattern transfer depended on the chosen preparation conditions for the gold nanoparticle etching mask. The influence of the Si surface properties was investigated by using either hydrophilic or hydrophobic Si substrates resulting from piranha solution or HF treatment, respectively. The polymer-coated gold nanoparticles had to be thermally treated in order to provide a direct contact at the metal/Si interface which is required for the following metal-assisted etching. Plasma treatment as well as flame annealing was successfully applied. The best results were obtained for Si substrates which were flame annealed in order to remove the polymer matrix - independent of the substrate surface properties prior to spin-coating (hydrophilic or hydrophobic). The presented method opens up new resources for the fabrication of porous silicon by metal-assisted etching. Here, a vast variety of metal nanoparticles accessible by well-established wet-chemical synthesis can be employed for the fabrication of the etching masks.

Concepts: Nanoparticle, Nanotechnology, Nanomaterials, Colloid, Silicon, Gold, Colloidal gold, Nanocrystalline silicon

24

To investigate porous silicon (PSi) nanoparticles (NPs) behavior in the embryonic brain.

Concepts: Silicon, Nanocrystalline silicon

23

To evaluate the chemotherapeutic potential of a novel multifunctional nanocomposite encapsulating both porous silicon (PSi) and gold (Au) nanoparticles in a polymeric nanocomplex.

Concepts: DNA, Therapeutic effect, Cancer, Nanoparticle, Golgi apparatus, Silicon, Nanocrystalline silicon

21

Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions.

Concepts: Nanoparticle, Oxidative phosphorylation, Cell culture, Silicon, Membrane biology, Lipid bilayer, Nanocrystalline silicon

5

Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.

Concepts: Solar cell, Wafer, Germanium, Diode, Crystalline silicon, Amorphous silicon, P-n junction, Nanocrystalline silicon

4

We propose a novel photothermal approach based on resonant dielectric nanoparticles, which posses imaginary part of permittivity signicantly smaller as compared to metal ones. We show both experimentally and theoretically that a spherical silicon nanoparticle with a magnetic quadrupolar Mie resonance converts light to heat up to 4 times more eectively than similar spherical gold nanoparticle at the same heating conditions. We observe photo-induced temperature raise up to 900 K with the silicon nanoparticle on a glass substrate at moderate intensities (< 2 mW/m2) and typical laser wavelength (633 nm). The advantage of using crystalline silicon is the simplicity of local temperature control by means of Raman spectroscopy working in a broad range of temperatures, i.e. up to melting point of silicon (1690 K), with sub-m spatial resolution. Our CMOS-compatible heater-thermometer nanoplatform paves the way to novel non-plasmonic photothermal applications, extending the temperature range and simplifying the thermoimaging procedure.

Concepts: Nanoparticle, Fundamental physics concepts, Light, Temperature, Heat, Silicon, Gold, Nanocrystalline silicon

3

Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.

Concepts: Electron, Carbon, Silicon, Solid, Solar cell, Crystalline silicon, Amorphous silicon, Nanocrystalline silicon

3

Silicon solar cells with nanopore-type black silicon (b-Si) anti-reflection (AR) layers and self-aligned selective emitter (SE) are reported in which the b-Si structure is prepared without the traditional addition of a nanoparticle (NP) catalyst. The contact-assisted chemical etching (CACE) method here is the first time reported, in which the metal top contacts on silicon solar cell surfaces function as the catalysts for b-Si fabrication and the whole etching process can be done in minutes at room temperature. The CACE method is based on the metal-assisted chemical etching (MACE) solution but without or metal precursor in the Si etchant (HF:H2O2:H2O), and the Au top contacts, or catalysts, are not removed from the solar cell surface after the etching. The effects of etching time, HF and H2O2 concentration and the HF:H2O2 ratio on the b-Si morphology, surface reflectivity, and solar cell efficiency have been investigated. Higher [HF] and [H2O2] with longer etching time cause collapse of the b-Si nanoporous structure and penetration of the p-n junctions, which are detrimental to the solar cell efficiency. The b-Si solar cell fabricated with the HF:H2O2:H2O volume ratio of 3:3:20 and a 3 min-etch time shows the highest efficiency 8.99% along with a decrease of reflectivity from 36.1% to 12.6% compared to the non-etched Si solar cell.

Concepts: Solar cell, Photovoltaics, Wafer, Germanium, Amorphous silicon, P-n junction, Nanocrystalline silicon, Black silicon

2

We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures.

Concepts: Electric potential, Nanoparticle, Fluid dynamics, Electrochemistry, Liquid, Surface tension, Microfluidics, Nanocrystalline silicon

1

Exponential blinking statistics was reported in oxidized Si nanoparticles and the switching mechanism was attributed to the activation and deactivation of unidentified nonradiative recombination centers. Using ab initio calculations we predicted that Si dangling bonds at the surface of oxidized nanoparticles introduce defect states which, depending on their charge and local stress conditions, may give rise to ON and OFF states responsible for exponential blinking statistics. Our results are based on first principles calculations of charge transition levels, single particle energies, and radiative and nonradiative lifetimes of dangling bond defects at the surface of oxidized silicon nanoparticles under stress.

Concepts: Oxygen, Nanoparticle, Matter, Carbon, Ab initio, Semiconductor, Silicon, Nanocrystalline silicon