SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Naja

58

The cytotoxicity of the venom of 25 species of Old World elapid snake was tested and compared with the morphological and behavioural adaptations of hooding and spitting. We determined that, contrary to previous assumptions, the venoms of spitting species are not consistently more cytotoxic than those of closely related non-spitting species. While this correlation between spitting and non-spitting was found among African cobras, it was not present among Asian cobras. On the other hand, a consistent positive correlation was observed between cytotoxicity and utilisation of the defensive hooding display that cobras are famous for. Hooding and spitting are widely regarded as defensive adaptations, but it has hitherto been uncertain whether cytotoxicity serves a defensive purpose or is somehow useful in prey subjugation. The results of this study suggest that cytotoxicity evolved primarily as a defensive innovation and that it has co-evolved twice alongside hooding behavior: once in the Hemachatus + Naja and again independently in the king cobras (Ophiophagus). There was a significant increase of cytotoxicity in the Asian Naja linked to the evolution of bold aposematic hood markings, reinforcing the link between hooding and the evolution of defensive cytotoxic venoms. In parallel, lineages with increased cytotoxicity but lacking bold hood patterns evolved aposematic markers in the form of high contrast body banding. The results also indicate that, secondary to the evolution of venom rich in cytotoxins, spitting has evolved three times independently: once within the African Naja, once within the Asian Naja, and once in the Hemachatus genus. The evolution of cytotoxic venom thus appears to facilitate the evolution of defensive spitting behaviour. In contrast, a secondary loss of cytotoxicity and reduction of the hood occurred in the water cobra Naja annulata, which possesses streamlined neurotoxic venom similar to that of other aquatic elapid snakes (e.g., hydrophiine sea snakes). The results of this study make an important contribution to our growing understanding of the selection pressures shaping the evolution of snake venom and its constituent toxins. The data also aid in elucidating the relationship between these selection pressures and the medical impact of human snakebite in the developing world, as cytotoxic cobras cause considerable morbidity including loss-of-function injuries that result in economic and social burdens in the tropics of Asia and sub-Saharan Africa.

Concepts: Natural selection, Africa, Cytotoxicity, Snake, Elapidae, King Cobra, Naja, Cobra

2

The study of craniofacial development is important in understanding the ontogenetic processes behind morphological diversity. A complete morphological description of the embryonic skull development of the Egyptian cobra, Naja h. haje, is lacking and there has been little comparative discussion of skull development either among elapid snakes or between them and other snakes.

Concepts: Squamata, Snake, Elapidae, Naja

1

We report the development of molecularly imprinted polyacrylamide nanoparticles that bind to and neutralize the activity of cytotoxins present in the venom of the Mozambique Spitting Cobra (Naja mossambica mossambica). The binding activity of these nanoparticles is avid and specific. These findings hold promise for the development of a synthetic antivenom.

Concepts: Supernova, Binding, Naja

1

The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels.

Concepts: Fluid dynamics, Fluid mechanics, Liquid, Fluid, Computational fluid dynamics, Navier–Stokes equations, Naja, Cobra

0

Naja ashei is an African spitting cobra species closely related toN. mossambicaandN. nigricollis. It is known that the venom ofN. ashei, like that of other African spitting cobras, mainly has cytotoxic effects, however data about its specific protein composition are not yet available. Thus, an attempt was made to determine the venom proteome ofN. asheiwith the use of 2-D electrophoresis and MALDI ToF/ToF (Matrix-Assisted Laser Desorption/Ionization Time of Flight) mass spectrometry techniques. Our investigation revealed that the main components of analysed venom are 3FTxs (Three-Finger Toxins) and PLA₂s (Phospholipases A₂). Additionally the presence of cysteine-rich venom proteins, 5'-nucleotidase and metalloproteinases has also been confirmed. The most interesting fact derived from this study is that the venom ofN. asheiincludes proteins not described previously in other African spitting cobras-cobra venom factor and venom nerve growth factor. To our knowledge, there are currently no other reports concerning this venom composition and we believe that our results will significantly increase interest in research of this species.

Concepts: Protein, Mass spectrometry, Proteomics, Elapidae, Naja, Naja nigricollis, Spitting cobra, Naja ashei

0

In Southeast Asia, envenoming resulting from cobra snakebites is an important public health issue in many regions, and antivenom therapy is the standard treatment for the snakebite. Because these cobras share a close evolutionary history, the amino acid sequences of major venom components in different snakes are very similar. Therefore, either monovalent or polyvalent antivenoms may offer paraspecific protection against envenomation of humans by several different snakes. In Taiwan, a bivalent antivenom-freeze-dried neurotoxic antivenom (FNAV)-against Bungarus multicinctus and Naja atra is available. However, whether this antivenom is also capable of neutralizing the venom of other species of snakes is not known. Here, to expand the clinical application of Taiwanese FNAV, we used an animal model to evaluate the neutralizing ability of FNAV against the venoms of three common snakes in Southeast Asia, including two ‘true’ cobras Naja kaouthia (Thailand) and Naja siamensis (Thailand), and the king cobra Ophiophagus hannah (Indonesia). We further applied mass spectrometry (MS)-based proteomic techniques to characterize venom proteomes and identify FNAV-recognizable antigens in the venoms of these Asian snakes. Neutralization assays in a mouse model showed that FNAV effectively neutralized the lethality of N. kaouthia and N. siamensis venoms, but not O. hannah venom. MS-based venom protein identification results further revealed that FNAV strongly recognized three-finger toxin and phospholipase A2, the major protein components of N. kaouthia and N. siamensis venoms. The characterization of venom proteomes and identification of FNAV-recognizable venom antigens may help researchers to further develop more effective antivenom designed to block the toxicity of dominant toxic proteins, with the ultimate goal of achieving broadly therapeutic effects against these cobra snakebites.

Concepts: Protein, Amino acid, Venom, Snake, Antivenom, Elapidae, King Cobra, Naja

0

Naja atra snakebite is uncommon in Taiwan and causes distinct effects on its victims. Although the Taiwan government produces its own specific antivenom, little information on the management of N. atra snakebite is available.

Concepts: Naja

0

We report the application of a hybrid element and molecular MS configuration for the parallel absolute quantification of μHPLC-separated intact sulfur-containing venom proteins, via ICP triple quadrupole MS and (32)S/(34)S isotope dilution analysis, and identification by ESI-QToF-MS of the toxins of the medically important African black-necked spitting cobra, Naja nigricollis (Tanzania); New Guinea small-eyed snake, Micropechis ikaheka; and Papuan black snake, Pseudechis papuanus. The main advantage of this approach is that only one generic sulfur-containing standard is required to quantify each and all intact Cys- and/or Met-containing toxins of the venom proteome. The results of absolute quantification are in reasonably good agreement with previously reported relative quantification of the most abundant protein families. However, both datasets depart in the quantification of the minor ones, showing a tendency for this set of proteins to be underestimated in standard peptide-centric venomics approaches. The molecular identity, specific toxic activity, and concentration in the venom, are the pillars on which the toxicovenomics-aimed discovery of the most medically-relevant venom toxins, e.g. those that need to be neutralized by an effective therapeutic antivenom, should be based. The pioneering venom proteome-wide absolute quantification shown in this paper represents thus a significant advance towards this goal. The potential of ICP triple quadrupole MS in proteomics in general, and venomics in particular, is critically discussed.

Concepts: Protein, Proteomics, Venom, Elapidae, Naja, Naja nigricollis, Spitting cobra, Naja ashei

0

Cobra neurotoxin (CNT), a peptide isolated from snake venom of Naja naja atra, shows central analgesic effects in our previous research. In order to help CNT pass through blood-brain barrier (BBB) and improve its central analgesic effects, a new kind of CNT nanocapsules were prepared by double emulsification with soybean lecithin and cholesterol as the shell, and pheophorbide as the photosensitizer added to make it photoresponsive. The analgesic effects were evaluated by hot plate test and acetic acid-induced writhing in mice. The CNT nanocapsules had an average particle size of 229.55 nm, zeta potential of -53.00 mV, encapsulation efficiency of 84.81% and drug loading of 2.98%, when the pheophorbide content was 1% of lecithin weight. Pheophorbide was mainly distributed in outer layer of the CNT nanocapsules and increased the release of the CNT nanocapsules after 650 nm illumination. The central analgesic effects were improved after intraperitoneal injection of CNT at 25 and 50 µg·kg(-1) under 650 nm irradiation for 30 min in the nasal cavity. Activation of pheophorbide by red light generated reactive oxygen species which opened the nanocapsules and BBB and helped the CNT enter the brain. This research provides a new drug delivery for treatment of central pain.

Concepts: Cholesterol, Oxygen, Brain, Opioid, E number, Lecithin, Elapidae, Naja

0

Autologous chondrocyte implantation (ACI) is promising strategy for cartilage repair. However, chondrocyte phenotype is easily lost when expanded in vitro which defined as “dedifferentiation”. To ensure successful therapy, an effective pro-chondrogenic agent is necessary to overcome the obstacle of limited cell numbers in the restoration process, and dedifferentiation is a prerequisite. In the present study, we investigated the chondro-protective effect of NGF from Chinese cobra venom on human chondrocytes by determination of its specific effect on cell viability, proliferation, morphology, GAG production and cartilage specific gene expression. The results suggested that NGF showed no cytotoxicity to chondrocytes below the concentration of 16µg/mL. DNA and glycosaminoglycan (GAG) content were, respectively, improved in NGF groups comparing to the control (P < 0.05). NGF up-regulate the gene expression of ACAN, SOX9, and COL2A1 while down-regulate the expression level of COL1A1 (P < 0.05). Moreover, the results of viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also suggested better performances in NGF groups. NGF of 6 µg/mL shown lower cytotoxicity on chondrocytes, more glycosaminoglycans (GAGs) synthesis and up- regulated chondrogenic gene expression. This study may provide a basis for the development of a novel agent for the treatment of articular cartilage defects. This article is protected by copyright. All rights reserved.

Concepts: DNA, Gene, Gene expression, Cell, Chondroitin sulfate, Cartilage, Autologous chondrocyte implantation, Naja