SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: N-type semiconductor

171

Cu2O p-type semiconductor hollow porous microspheres have been prepared by using a simple soft-template method at room temperature. The morphology of as-synthesized samples is hollow spherical structures with the diameter ranging from 200 to 500 nm, and the surfaces of the spheres are rough, porous and with lots of channels and folds. The photocatalytic activity of degradation of methyl orange (MO) under visible light irradiation was investigated by UV-visible spectroscopy. The results show that the hollow porous Cu2O particles were uniform in diameters and have an excellent ability in visible light-induced degradation of MO. Meanwhile, the growth mechanism of the prepared Cu2O was also analyzed. We find that sodium dodecyl sulfate acted the role of soft templates in the synthesis process. The hollow porous structure was not only sensitive to the soft template but also to the amount of reagents.

Concepts: Spectroscopy, Light, Electromagnetic radiation, Semiconductor, Visible spectrum, Semiconductors, P-type semiconductor, N-type semiconductor

28

We report on p-type conductivity in antimony (Sb)-doped ZnO (ZnO:Sb) nanorods which have self-corrugated surfaces. The p-ZnO:Sb/n-ZnO nanorod diode shows good rectification characteristics, confirming that a p-n homojunction is formed in the ZnO nanorod diode. The low-temperature photoluminescence (PL) spectra of the ZnO:Sb nanorods reveal that the p-type conductivity in p-ZnO:Sb is related to the Sb(Zn)-2V(Zn) complex acceptors. Transmission electron microscopy (TEM) analysis of the ZnO:Sb nanorods also shows that the p-type conductivity is attributed to the Sb(Zn)-2V(Zn) complex acceptors which can be easily formed near the self-corrugated surface regions of ZnO:Sb nanorods. These results suggest that the Sb(Zn)-2V(Zn) complex acceptors are mainly responsible for the p-type conductivity in ZnO:Sb nanorods which have corrugated surfaces.

Concepts: Electron, Vacuum tube, Nanotechnology, Semiconductor, Transmission electron microscopy, Diode, N-type semiconductor, Riemann surface

27

By bringing an anodically biased needle electrode into contact with n-type Si at its tip in a solution containing hydrofluoric acid, Si is etched at the interface with the needle electrode and a pore is formed. However, in the case of p-type Si, although pores can be formed, Si is likely to be corroded and covered with a microporous Si layer. This is due to injection of holes from the needle electrode into the bulk of p-type Si, which shifts its potential to a level more positive than the potential needed for corrosion and formation of a microporous Si layer. However, by applying square-wave potential pulses to a Pt needle electrode, these undesirable changes are prevented because holes injected into the bulk of Si during the period of anodic potential are annihilated with electrons injected into Si during the period of cathodic potential. Even under such conditions, holes supplied to the place near the Si/metal interface are used for etching p-type Si, leading to formation of a pore at the place where the Pt needle electrode was in contact.

Concepts: Semiconductor, Diode, P-type semiconductor, N-type semiconductor, Hydrofluoric acid

5

Solar photoconversion in semiconductors is driven by charge separation at the interface of the semiconductor and contacting layers. Here we demonstrate that time-resolved photoinduced reflectance from a semiconductor captures interfacial carrier dynamics. We applied this transient photoreflectance method to study charge transfer at p-type gallium-indium phosphide (p-GaInP2) interfaces critically important to solar-driven water splitting. We monitored the formation and decay of transient electric fields that form upon photoexcitation within bare p-GaInP2, p-GaInP2/platinum (Pt), and p-GaInP2/amorphous titania (TiO2) interfaces. The data show that a field at both the p-GaInP2/Pt and p-GaInP2/TiO2 interfaces drives charge separation. Additionally, the charge recombination rate at the p-GaInP2/TiO2 interface is greatly reduced owing to its p-n nature, compared with the Schottky nature of the p-GaInP2/Pt interface.

Concepts: Electron, Semiconductor, Solar cell, Diode, Object-oriented programming, Semiconductors, P-n junction, N-type semiconductor

2

The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-performance field-effect devices have been achieved from monolayered materials and their heterostructures, a p-n heterojunction diode derived from ultrathin materials is notably absent and constrains the fabrication of complex electronic and optoelectronic circuits. Here we demonstrate a gate-tunable p-n heterojunction diode using semiconducting single-walled carbon nanotubes (SWCNTs) and single-layer molybdenum disulfide as p-type and n-type semiconductors, respectively. The vertical stacking of these two direct band gap semiconductors forms a heterojunction with electrical characteristics that can be tuned with an applied gate bias to achieve a wide range of charge transport behavior ranging from insulating to rectifying with forward-to-reverse bias current ratios exceeding 10(4). This heterojunction diode also responds strongly to optical irradiation with an external quantum efficiency of 25% and fast photoresponse <15 μs. Because SWCNTs have a diverse range of electrical properties as a function of chirality and an increasing number of atomically thin 2D nanomaterials are being isolated, the gate-tunable p-n heterojunction concept presented here should be widely generalizable to realize diverse ultrathin, high-performance electronics and optoelectronics.

Concepts: Semiconductor, Transistor, Carbon nanotube, Diode, Semiconductors, P-n junction, N-type semiconductor, Heterojunction

1

Carrier transport characteristics in high-efficiency Single-Walled Carbon Nanotubes (SWNTs)/Silicon (Si) hybrid solar cells are presented. The solar cells were fabricated by depositing intrinsic p-type SWNT thin-films on n-type Si wafers without involving any high-temperature process for p-n junction formation. The optimized cells showed a device ideality factor close to unity and a record-high power-conversion-efficiency of >11 %. By investigating the dark forward current density characteristics with varying temperature, we have identified that the temperature-dependent current rectification originates from the thermally activated band-to-band transition of carriers in Si, and the role of the SWNT thin films is to establish a built-in potential for carrier separation/collection. We have also established that the dominant carrier transport mechanism is diffusion, with minimal interface recombination. This is further supported by the observation of a long minority carrier lifetime of ~ 34 µs, determined by the transient recovery method. This study suggests that these hybrid solar cells operate in the same manner as single crystalline p-n homojunction Si solar cells.

Concepts: Electric current, Semiconductor, Carbon nanotube, Solar cell, Diode, Semiconductors, P-n junction, N-type semiconductor

0

The same copper phosphate catalysts were synthesized by obtaining the methods involving solid state as well as liquid state reactions in this work. And then the optimised p-n hybrid junction photocatalysts have been synthesized following the same solid/liquid reaction pathways. The synthesized copper phosphate photocatalyst has unique rod, flower, caramel-treat-like morphology. The Mott-Schottky behavior is in accordance with the expected behavior of n-type semiconductor and the carrier concentration was calculated using the M-S analysis for the photocatalyst. And for the p-n hybrid junction of 8RGO-Cu3(PO4)2-PA (PA abbreviated for photoassisted synthesis method), 8RGO-Cu3(PO4)2-EG(EG abbreviated for Ethylene Glycol based synthesis method), 8RGO-Cu3(PO4)2-PEG (PEG abbreviated for Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol based synthesis method)the amount of H2synthesized was 7500, 6500 and 4500 µmol/h/g, respectively. The excited electrons resulting after the irradiation of visible light on the CB of p-type reduced graphene oxide (RGO) migrate easily to n-type Cu3(PO4)2via. the p-n junction interfaces and hence great charge carrier separation was achieved.

Concepts: Electron, Chemical reaction, Semiconductor, Semiconductor device, Solid, Diode, P-n junction, N-type semiconductor

0

Compared with MoS2 and WS2, the selenide analogues have narrower band gaps and higher electron mobilities, which make them more applicable to real electrical devices. Besides, few-layered metal selenides have higher electrical conductivity, carrier mobility and light absorption than the corresponding monolayers. However, the large-scale and high-quality growth of few-layered metal selenides remains a significant challenge. Here, we develop a facile method to grow large-area and highly-crystalline few-layered MoSe2 by directly selenizing the Mo foil surfaces at 550 oC within 60 min under ambient pressure. The atomic layers were controllably grown with the thickness between 3.4 and 6 nm which just met the thickness range required for high-performance electrical devices. Furthermore, we fabricated a vertical p-n junction photodetector composed of few-layered MoSe2 and p-type silicon, achieving photoresponsivity higher than two orders of magnitude than that of the reported monolayer counterpart. This technique provides a feasible approach towards preparing other 2D TMDs for device applications.

Concepts: Electron, Photon, Metal, Molybdenum, Semiconductor, Solar cell, Semiconductors, N-type semiconductor

0

Lead halide perovskite has attracted striking attention recently due to their appealing properties. However, toxicity and stability are two main factors restricting its application. In this work, we experimentally synthesized less toxic and highly stable Pd-based hybrid perovskite after exploring different experimental conditions. This new hybrid organic-inorganic perovskite (CH₃NH₃)₂PdBr₄ was found to be an orthorhombic crystal (Cmce, Z=4) with lattice parameters a=8.00 Å, b=7.99 Å, c= 18.89 Å. The Cmce symmetry and lattices parameters were confirmed using Pawley refinement. The atoms positions were testified based on DFT calculation. This perovskite compound was determined to be a p-type semiconductor, with a resistivity of 102.9 kΩ*cm, a carrier concentration of 3.4 ×1012 /cm³ and a mobility of 23.4 cm² /(V*S). Interestingly, XRD and UV-vis measurements indicated that the phase of this new perovskite was maintained with an optical gap of 1.91 eV after leaving in air with a high humidity of 60% for 4 days, and unchanged for months in N₂ ambiance, much more stable than most existing organic-inorganic perovskites. The synthesis and various characterizations of this work further the understanding of this (CH₃NH₃)₂PdBr₄ organic-inorganic hybrid perovskite material.

Concepts: Chemistry, Semiconductor, Test method, Synthesis, Humidity, Superconductivity, P-type semiconductor, N-type semiconductor

0

The important role of p-n junction in modulation of the optoelectronic properties of semiconductors is widely cognized. In this work, for the first time the synthesis of p-GaSe/n-MoS2 heterostructures via van der Waals expitaxial growth is reported, although a considerable lattice mismatching of ≈18% exists. According to the simulation, a significant type II p-n junction barrier located at the interface is expected to be formed, which can modulate optoelectronic properties of MoS2 effectively. It is intriguing to reveal that the presence of GaSe can result in obvious Raman and photoluminescence (PL) shift of MoS2 compared to that of pristine one, more interestingly, for PL peak shift, the effect of GaSe-induced tensile strain on MoS2 has overcome the p-doping effect of GaSe, evidencing the strong interlayer coupling between GaSe and MoS2 . As a result, the photoresponse rate of heterostructures is improved by almost three orders of magnitude compared with that of pristine MoS2 .

Concepts: Semiconductor, Semiconductor device, Transistor, Diode, Semiconductors, P-n junction, N-type semiconductor, Heterojunction