SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Myopia

437

Myopia is a common cause of vision loss, with uncorrected myopia the leading cause of distance vision impairment globally. Individual studies show variations in the prevalence of myopia and high myopia between regions and ethnic groups, and there continues to be uncertainty regarding increasing prevalence of myopia.

Concepts: Ophthalmology, Myopia, Visual impairment, Anarchism

175

Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide association study (45,771 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset and identified 22 significant associations ([Formula: see text]), two of which are replications of earlier associations with refractive error. Ten of the 20 novel associations identified replicate in a separate cohort of 8,323 participants who reported if they had developed myopia before age 10. These 22 associations in total explain 2.9% of the variance in myopia age of onset and point toward a number of different mechanisms behind the development of myopia. One association is in the gene , which has previously been linked to abnormally small eyes; one is in a gene that forms part of the extracellular matrix (); two are in or near genes involved in the regeneration of 11-cis-retinal ( and ); two are near genes known to be involved in the growth and guidance of retinal ganglion cells (, ); and five are in or near genes involved in neuronal signaling or development. These novel findings point toward multiple genetic factors involved in the development of myopia and suggest that complex interactions between extracellular matrix remodeling, neuronal development, and visual signals from the retina may underlie the development of myopia in humans.

Concepts: Nervous system, Genetics, Retina, Eye, Photoreceptor cell, Visual system, Myopia, Retinal ganglion cell

170

PURPOSE: To investigate the normative data of ocular axial length and its associations in Chinese. METHOD: The population-based Beijing Eye Study 2011 is a cross-sectional study performed in Greater Beijing. The study included 3468 individuals (1963 (56.6%) women) with a mean age of 64.6±9.8 years (range: 50-93 years). A detailed ophthalmic and medical examination was performed. Axial length was measured by optical low-coherence reflectometry. RESULTS: Axial length measurements were available for 3159 (91.1%) study participants. Mean axial length was 23.25±1.14 mm (range: 18.96-30.88 mm). In multivariate analysis, axial length was significantly associated with the systemic parameters of higher age (P<0.001), higher body height (P = 0.003), higher level of education (P<0.001) and urban region of habitation (P<0.001), and with the ocular parameters of thicker central cornea (P = 0.001), higher corneal curvature radius (P<0.001), deeper anterior chamber (P<0.001), thicker lens (P<0.001), more myopic refractive error (P<0.001), larger pupil diameter (P = 0.018), and higher best corrected visual acuity (P<0.001). It was additionally and negatively associated with the lens vault (P<0.001). In highly myopic eyes, axial length was significantly associated with lower level of education (P = 0.008), more myopic refractive error (P<0.001), and lower best corrected visual acuity (P = 0.034). CONCLUSIONS: Mean ocular axial length in the older adult population of Greater Beijing (23.25±1.14 mm) was similar to the value measured in other urban populations and was higher than in a rural Central Indian population. The association between axial length and older age may potentially be associated with a survival artifact. The association between axial length and body height agrees with the general association between anthropomorphic measures and eye globe size. The association with the level of education and urban region of habitation confirms with previous studies. In contrast in highly myopic eyes, axial length was negatively associated with educational level and best corrected visual acuity.

Concepts: Eye, Visual acuity, Cornea, Myopia, Contact lens, Refractive error, Length, Pupil

169

To compare the performance of two novel multipurpose disinfecting solutions (MPDS) in preventing silicone hydrogel contact lens dehydration, provide higher scores of subjective comfort and stable optical quality during a month of lens wear in neophyte volunteers.

Concepts: Cornea, Myopia, Lens, Contact lens, Contact lenses, Corrective lens, Intraocular lens, Oxygen permeability

168

Background: Refractive errors (RE) are the most common cause of avoidable visual impairment in children. But benefits of visual aids, which are means for correcting RE, depend on the compliance of visual aids by end users. Aim: To study the compliance of spectacle wear among rural school children in Pune district as part of the sarva siksha abhiyan (education for all scheme) after 6 - 12 months of providing free spectacles. Settings and Design: Cross-sectional follow-up study of rural secondary school children in western India. Materials and Methods: The students were examined by a team of optometrists who collected the demographic details, observed if the child was wearing the spectacles, and performed an ocular examination. The students were asked to give reasons for non-wear in a closed-ended questionnaire. Statistical Analysis: Chi-square test and multiple logistic regression used for data analysis. Results: Of the 2312 students who were dispensed spectacles in 2009, 1018 were re-examined in 2010. 523 students (51.4%) were female, the mean age was 12.1 years 300 (29.5%) were wearing their spectacles, 492 (68.5%) students claimed to have them at home while 211 (29.4%) reported not having them at all. Compliance of spectacle wear was positively associated to the magnitude of refractive error (P < 0.001), father's education (P = 0.016), female sex (P = 0.029) and negatively associated to the visual acuity of the better eye (P < 0.001) and area of residence (P < 0.0001). Of those that were examined and found to be myopic (N = 499), 220 (44%) wore their spectacles to examination. Factors associated with compliance to spectacle usage in the myopic population included increasing refractive error (P < 0.001), worsening visual acuity (P < 0.001), and higher academic performance (P < 0.001). The causes for not wearing spectacles were 'lost spectacles' 67(9.3%), 'broken spectacles' 125 (17.4%), 'forgot spectacles at home' 117 (16.3%), 'uses spectacles sometimes' 109 (15.2%), 'teased about spectacles' 142 (19.8%) and 'do not like the spectacles' 86 (12%). Conclusion: Spectacle compliance was poor amongst school children in rural Pune; many having significant vision loss as a result.

Concepts: Regression analysis, Refraction, Visual acuity, Ophthalmology, Myopia, Refractive error, Visual impairment, Glasses

101

Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user’s vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user’s external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.

Concepts: Eye, Cornea, Myopia, Lens, Contact lens, Corrective lens, Tears, Wireless energy transfer

40

Contact lens-related eye infections, which can lead to serious outcomes, including blindness, are associated with several risk factors, including sleeping in lenses, exposing lenses to water, not adhering to replacement schedules, and reusing disinfecting solution (1). In some studies, adolescent and young adult contact lens wearers have been reported to be more likely than older adult contact lens wearers to develop eye infections (2,3) and more likely to have poor contact lens hygiene practices (2). In 2015, CDC reported the number and demographics of adult contact lens wearers in the United States to define the population at risk for contact lens-related eye infections (4); however, this estimate did not include adolescents. To better understand this group of younger contact lens wearers and guide prevention efforts, a population-based survey was used to assess contact lens wear, care behaviors, risk factors, and demographics among persons aged 12-17 years (referred to as adolescents in this report), young adults aged 18-24 years, and older adults aged ≥25 years in the United States. In 2016, an estimated 3.6 million adolescents (14.5%) wore contact lenses. Of the adolescents who wore contact lenses, 85% reported at least one behavior that put them at risk for a contact lens-related eye infection, compared with 81% of young adults, and 88% of older adults. These findings can inform the creation of age-specific targeted prevention messages aimed at contact lens wearers and establish a baseline for evaluating trends in contact lens wear, care habits, and contact lens-related risk behaviors.

Concepts: United States, Cornea, Adolescence, Myopia, Lens, Contact lens, Contact lenses, Corrective lens

39

Myopia has emerged as a major health issue in east Asia, because of its increasingly high prevalence in the past few decades (now 80-90% in school-leavers), and because of the sight-threatening pathologies associated with high myopia, which now affects 10-20% of those completing secondary schooling in this part of the world. Similar, but less marked, changes are occurring in other parts of the world. The higher prevalence of myopia in east Asian cities seems to be associated with increasing educational pressures, combined with life-style changes, which have reduced the time children spend outside. There are no reported major genes for school myopia, although there are several genes associated with high myopia. Any genetic contribution to ethnic differences may be small. However, to what extent many genes of small effect and gene-environment interactions contribute to variations in school myopia within populations remains to be established. There are promising optical and pharmacological interventions for preventing the development of myopia or slowing its progression, which require further validation, and promising vision-sparing treatments for pathological myopia.

Concepts: Biology, Southeast Asia, Education, High school, Asia, College, Myopia, East Asia

35

Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5'-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10-4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10-3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10-3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10-4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10-4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10-4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10-4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10-4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the "missing" myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development.

Concepts: Gene, Genetics, Gene expression, Evolution, Vision, Myopia, Refractive error, Visual impairment

32

We verified whether a stochastic resonance paradigm (SR), with random interference (“noise”) added in optimal amounts, improves the detection of sub-threshold visual information by subjects with retinal disorder and impaired vision as it does in the normally sighted. Six levels of dynamic, zero-mean Gaussian noise were added to each pixel of images (13 contrast levels) in which alphabet characters were displayed against a uniform gray background. Images were presented with contrast below the subjective threshold to 14 visually impaired subjects (age: 22-53 yrs.). The fraction of recognized letters varied between 0 and 0.3 at baseline and increased in all subjects when noise was added in optimal amounts; peak recognition ranged between 0.2 and 0.8 at noise sigmas between 6 and 30 grey scale values (GSV) and decreased in all subjects at noise levels with sigma above 30 GSV. The results replicate in the visually impaired the facilitation of visual information processing with images presented in SR paradigms that has been documented in sighted subjects. The effect was obtained with low-level image manipulation and application appears readily possible: it would enhance the efficiency of today vision-improving aids and help in the development of the visual prostheses hopefully available in the future.

Concepts: Retina, Vision, Linguistics, Normal distribution, Disability, Myopia, Visual impairment, Noise