SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mycobacterium bovis

171

Mycobacteria are shaped by a thick envelope made of an array of uniquely structured lipids and polysaccharides. However, the spatial organizations of these molecules remain unclear. Here we show that exposure to an esterase from Mycobacterium smegmatis (Msmeg_1529), hydrolyzing the ester linkage of trehalose dimycolate (TDM) in vitro, triggers rapid and efficient lysis of Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium marinum. Exposure to the esterase immediately releases free mycolic acids, while concomitantly depleting trehalose mycolates. Moreover, lysis could be competitively inhibited by an excess of purified TDM and was abolished by a S124A mutation affecting the catalytic activity of the esterase. These findings are consistent with an indispensible structural role of trehalose mycolates in architectural design of the exposed surface of mycobacterial envelope. Importantly, we also demonstrate that the esterase-mediated rapid lysis of M. tuberculosis significantly improves its detection in paucibacillary samples.

Concepts: Tuberculosis, Mycobacterium, Mycobacterium tuberculosis, Mycobacterium smegmatis, Mycobacterium bovis, Corynebacterineae, Acid fast bacilli, Mycobacterium marinum

169

Badgers are involved in the transmission to cattle of bovine tuberculosis (TB), a serious problem for the UK farming industry. Cross-sectional studies have shown an association between bite wounds and TB infection in badgers which may have implications for M. bovis transmission and control, although the sequence of these two events is unclear. Transmission during aggressive encounters could potentially reduce the effectiveness of policies which increase the average range of a badger and thus its opportunities for interaction with other social groups.

Concepts: Tuberculosis, Mycobacterium, Cattle, Mycobacterium bovis, Bacillus Calmette-Guérin, Tuberculosis treatment, Badger

166

Pleural tuberculosis (TB), together with lymphatic TB, constitutes more than half of all extrapulmonary cases. Pleural effusions (PEs) in TB are representative of lymphocytic PEs which are dominated by T cells. However, the mechanism underlying T lymphocytes homing and accumulation in PEs is still incompletely understood. Here we performed a comparative analysis of cytokine abundance in PEs from TB patients and non-TB patients by protein array analysis and observed that MCP-2/CCL8 is highly expressed in the TB-PEs as compared to peripheral blood. Meanwhile, we observed that CCR5, the primary receptor used by MCP-2/CCL8, is mostly expressed on pleural CD4(+) T lymphocytes. Furthermore, we found that infection with either Mycobacterium bovis Bacillus Calmette-Guérin (BCG) or Mycobacterium tuberculosis H37Rv induced production of MCP-2/CCL8 at both transcriptional and protein level in Raw264.7 and THP-1 macrophage cells, mouse peritoneal macrophages as well as human PBMC monocyte-derived macrophages (MDMs). The induction of MCP-2/CCL8 by mycobacteria is dependent on the activation of TLR2/PI3K/Akt and p38 signaling pathway. We conclude that accumulation of MCP-2/CCL8 in TB-PEs may function as a biomarker for TB diagnosis.

Concepts: Immune system, White blood cell, Protein, Cell biology, B cell, Tuberculosis, Mycobacterium, Mycobacterium bovis

42

Routine full characterization of Mycobacterium tuberculosis (TB) is culture-based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near point of care.We demonstrate a low-cost DNA extraction method for TB WGS direct from patient samples. We initially evaluated the method using the Illumina MiSeq sequencer (40 smear-positive respiratory samples, obtained after routine clinical testing, and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction was obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. Using an Illumina MiSeq/MiniSeq the workflow from patient sample to results can be completed in 44/16 hours at a reagent cost of £96/£198 per sample.We then employed a non-specific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis BCG strain (BCG), and to combined culture-negative sputum DNA and BCG DNA. For flowcell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 hours, with full susceptibility results 5 hours later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of the MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis in direct samples.

Concepts: DNA, Molecular biology, Tuberculosis, Full genome sequencing, Mycobacterium, Mycobacterium tuberculosis, Mycobacterium bovis, Pyrazinamide

39

Transcription activator-like effector nuclease (TALEN)-mediated genome modification has been applied successfully to create transgenic animals in various species, such as mouse, pig, and even monkey. However, transgenic cattle with gene knockin have yet to be created using TALENs. Here, we report site-specific knockin of the transcription activator-like effector (TALE) nickase-mediated SP110 nuclear body protein gene (SP110) via homologous recombination to produce tuberculosis-resistant cattle. In vitro and in vivo challenge and transmission experiments proved that the transgenic cattle are able to control the growth and multiplication of Mycobacterium bovis, turn on the apoptotic pathway of cell death instead of necrosis after infection, and efficiently resist the low dose of M. bovis transmitted from tuberculous cattle in nature. In this study, we developed TALE nickases to modify the genome of Holstein-Friesian cattle, thereby engineering a heritable genome modification that facilitates resistance to tuberculosis.

Concepts: DNA, Gene, Genetics, Apoptosis, DNA repair, Tuberculosis, Mycobacterium, Mycobacterium bovis

36

A field trial was conducted to investigate the impact of oral vaccination of free-living badgers against natural-transmitted Mycobacterium bovis infection. For a period of three years badgers were captured over seven sweeps in three zones and assigned for oral vaccination with a lipid-encapsulated BCG vaccine (Liporale-BCG) or with placebo. Badgers enrolled in Zone A were administered placebo while all badgers enrolled in Zone C were vaccinated with BCG. Badgers enrolled in the middle area, Zone B, were randomly assigned 50:50 for treatment with vaccine or placebo. Treatment in each zone remained blinded until the end of the study period. The outcome of interest was incident cases of tuberculosis measured as time to seroconversion events using the BrockTB Stat-Pak lateral flow serology test, supplemented with post-mortem examination. Among the vaccinated badgers that seroconverted, the median time to seroconversion (413 days) was significantly longer (p = 0.04) when compared with non-vaccinated animals (230 days). Survival analysis (modelling time to seroconversion) revealed that there was a significant difference in the rate of seroconversion between vaccinated and non-vaccinated badgers in Zones A and C throughout the trial period (p = 0.015). For badgers enrolled during sweeps 1-2 the Vaccine Efficacy (VE) determined from hazard rate ratios was 36% (95% CI: -62%- 75%). For badgers enrolled in these zones during sweeps 3-6, the VE was 84% (95% CI: 29%- 97%). This indicated that VE increased with the level of vaccine coverage. Post-mortem examination of badgers at the end of the trial also revealed a significant difference in the proportion of animals presenting with M. bovis culture confirmed lesions in vaccinated Zone C (9%) compared with non-vaccinated Zone A (26%). These results demonstrate that oral BCG vaccination confers protection to badgers and could be used to reduce incident rates in tuberculosis-infected populations of badgers.

Concepts: Immune system, Vaccine, Vaccination, Tuberculosis, Mycobacterium, Mycobacterium bovis, Bacillus Calmette-Guérin, Serology

33

Effective management of infectious disease relies upon understanding mechanisms of pathogen transmission. In particular, while models of disease dynamics usually assume transmission through direct contact, transmission through environmental contamination can cause different dynamics. We used Global Positioning System (GPS) collars and proximity-sensing contact-collars to explore opportunities for transmission of Mycobacterium bovis [causal agent of bovine tuberculosis] between cattle and badgers (Meles meles). Cattle pasture was badgers' most preferred habitat. Nevertheless, although collared cattle spent 2914 collar-nights in the home ranges of contact-collared badgers, and 5380 collar-nights in the home ranges of GPS-collared badgers, we detected no direct contacts between the two species. Simultaneous GPS-tracking revealed that badgers preferred land > 50 m from cattle. Very infrequent direct contact indicates that badger-to-cattle and cattle-to-badger M. bovis transmission may typically occur through contamination of the two species' shared environment. This information should help to inform tuberculosis control by guiding both modelling and farm management.

Concepts: Infectious disease, Microbiology, Tuberculosis, Mycobacterium, Cattle, Mycobacterium bovis, Global Positioning System, Tuberculosis treatment

31

Bovine TB (bTB) is endemic in Irish cattle and has eluded eradication despite considerable expenditure, amid debate over the relative roles of badgers and cattle in disease transmission. Using a comprehensive dataset from Northern Ireland (>10,000 km(2); 29,513 cattle herds), we investigated interactions between host populations in one of the first large-scale risk factor analyses for new herd breakdowns to combine data on both species. Cattle risk factors (movements, international imports, bTB history, neighbours with bTB) were more strongly associated with herd risk than area-level measures of badger social group density, habitat suitability or persecution (sett disturbance). Highest risks were in areas of high badger social group density and high rates of persecution, potentially representing both responsive persecution of badgers in high cattle risk areas and effects of persecution on cattle bTB risk through badger social group disruption. Average badger persecution was associated with reduced cattle bTB risk (compared with high persecution areas), so persecution may contribute towards sustaining bTB hotspots; findings with important implications for existing and planned disease control programmes.

Concepts: Epidemiology, Risk, Tuberculosis, Factor analysis, Cattle, Mycobacterium bovis, Ireland, Badger

31

Reasons for the highly variable and often poor protection conferred by the Mycobacterium bovis bacille Calmette-Guerin (BCG) vaccine are multifaceted and poorly understood.

Concepts: Cohort study, Malaria, Vaccine, Poverty, Tuberculosis, Mycobacterium, Mycobacterium bovis, Bacillus Calmette-Guérin

27

Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world’s biggest global health burdens. Recently, engineered polyhydroxyalkanoate (PHA) biobeads produced in both E. coli and Lactococcus lactis displaying mycobacterial antigens were found to induce significant cell mediated immune responses in mice. We observed that such PHA beads contained host cell proteins as impurities which we hypothesized to have the potential to induce immunity. In this study we aimed to develop PHA beads produced in mycobacteria (mycobacterial PHA biobeads, MBB) and test their potential as TB vaccine in a mouse model. As a model organism, nonpathogenic Mycobacterium smegmatis was engineered to produce MBB or MBB with immobilized mycobacterial antigens Ag85A and ESAT-6 on their surface (A:E-MBB). Three key enzymes involved in the poly(3-hydroxybutyric acid) pathway, namely β-ketothiolase (PhaA), acetoacetyl-CoA reductase (PhaB), and PHA synthase (PhaC), were engineered into E. coli-mycobacteria shuttle plasmids and expressed in trans. Immobilization of specific antigens to the surface of the MBB was achieved by creating a fusion with the PHA synthase which remains covalently attached to the polyester core, resulting in PHA biobeads displaying covalently immobilized antigens.

Concepts: Immune system, Protein, Bacteria, Tuberculosis, Mycobacterium, Mycobacterium tuberculosis, Mycobacterium bovis, Corynebacterineae