SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Murraya paniculata

5

The chemical composition of volatile oils from 22 genotypes of Citrus and related genera was poorly differentiated, but chemometric techniques have clarified the relationships between the 22 genotypes, and allowed us to understand their resistance to D. citri. The most convincing similarities include the synthesis of (Z)-β-ocimene and (E)-caryophyllene for all 11 genotypes of group A. Genotypes of group B are not uniformly characterized by essential oil compounds. When stimulated with odor sources of 22 genotypes in a Y-tube olfactometer D. citri preferentially entered the arm containing the volatile oils of Murraya paniculata, confirming orange jasmine as its best host. C. reticulata × C. sinensis was the least preferred genotype, and is characterized by the presence of phytol, (Z)-β-ocimene, and β-elemene, which were not found in the most preferred genotype. We speculate that these three compounds may act as a repellent, making these oils less attractive to D. citri.

Concepts: Citrus, Orange, Essential oil, Oil, Oils, Lemon, Rutaceae, Murraya paniculata

3

Genetic variability in insect vectors is valuable to study vector competence determinants and to select non-vector populations that may help reduce the spread of vector-borne pathogens. We collected and tested vector competency of 15 isofemale lines of Asian citrus psyllid, Diaphorina citri, vector of ‘Candidatus Liberibacter asiaticus’ (CLas). CLas is associated with huanglongbing (citrus greening), the most serious citrus disease worldwide. D. citri adults were collected from orange jasmine (Murraya paniculata) hedges in Florida, and individual pairs (females and males) were caged on healthy Murraya plants for egg laying. The progeny from each pair that tested CLas-negative by qPCR were maintained on Murraya plants and considered an isofemale line. Six acquisition tests on D. citri adults that were reared as nymphs on CLas-infected citrus, from various generations of each line, were conducted to assess their acquisition rates (percentage of qPCR-positive adults). Three lines with mean acquisition rates of 28 to 32%, were classified as ‘good’ acquirers and three other lines were classified as ‘poor’ acquirers, with only 5 to 8% acquisition rates. All lines were further tested for their ability to inoculate CLas by confining CLas-exposed psyllids for one week onto healthy citrus leaves (6-10 adults/leaf/week), and testing the leaves for CLas by qPCR. Mean inoculation rates were 19 to 28% for the three good acquirer lines and 0 to 3% for the three poor acquirer lines. Statistical analyses indicated positive correlations between CLas acquisition and inoculation rates, as well as between CLas titer in the psyllids and CLas acquisition or inoculation rates. Phenotypic and molecular characterization of one of the good and one of the poor acquirer lines revealed differences between them in color morphs and hemocyanin expression, but not the composition of bacterial endosymbionts. Understanding the genetic architecture of CLas transmission will enable the development of new tools for combating this devastating citrus disease.

Concepts: Genetics, Bacteria, Statistics, Vaccination, Pathogen, Jumping plant louse, Huanglongbing, Murraya paniculata

0

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is a devastating pest of Citrus spp. The aim of present study was to investigate the development and mortality of ACP on citrus (Citrus sinensis) (healthy and Huánglóngbìng- (HLB) diseased) and jasmine (Murraya paniculata) plants at various temperatures. Two new Isaria strains were collected from citrus orchards of Fuzhou (China), and HLB-diseased plants were verified by running PCR for 16S gene of Candidatus Liberibacter asiaticus (CLas). Development observations were recorded for egg, nymph and adult stages on all plants and three different temperatures (20, 25 and 30 °C) whereas mortality observations were recorded for the nymph (fifth instar) and adults on all plants at 25 °C. Field collected Isaria strains were belonged to previously reported Chinese strains under Maximum Parsimony (MP) and Maximum Likelihood methods, as well as, CLas isolates were belonged to previously reported Chinese isolates under MP and Neighbor-Joining methods. The fastest development and mortality was observed on HLB-diseased plants whereas longest time was taken by development and mortality completion on jasmine plants at all temperatures. The fastest developmental times of egg, nymph (first to fourth and fifth instar) and adult stages were ranged from 3.02 to 3.72 d, to 7.63-9.3 d, 5.35-5.65 d and 24.46-28.47 d on HLB-diseased plants at 30-20 °C, respectively. On the other hand, I. javanica caused the fastest mortality of nymphs and adults (32.21 ± 4.47% and 19.33 ± 4.51%) on HLB-diseased plants with the concentration of 1 × 108 conidia.mL-1 after 3 d and 7 d, respectively. It is concluded that there is a need for extensive molecular work to understand the extra-development and mortality of ACP on diseased plants, because, CLas bacterium can be supportive to uptake more sap from plant phloem.

Concepts: Developmental biology, China, Maximum likelihood, Fruit, Hemiptera, Adult development, Rutaceae, Murraya paniculata

0

Diaphorina citri is a vector of the bacterial causative agent of Huanglongbing (HLB = Citrus greening), a severe disease affecting citrus crops. As there is no known control for HLB, manipulating insect behaviour through deployment of semiochemicals offers a promising opportunity for protecting citrus crops. The behavioural responses of D. citri to plant volatiles, and the identity of these plant volatiles were investigated. Volatiles were collected from host plants Murraya paniculata, Citrus sinensis, C. reshni, C. limettioides, Poncirus trifoliata, and from non-host plants Psidium guajava, Mangifera indica, Anacardium occidentale. In behavioural assays, female D. citri spent more time in the arms containing volatiles from either M. paniculata or C. sinensis compared to the control arms. When D. citri was exposed to volatiles collected from A. occidentale, they preferred the control arm. Volatiles emitted from the other studied plants did not influence the foraging behaviour of D. citri. Chemical analyses of volatile extracts from C. sinensis, M. paniculata, and A. occidentale revealed the presence of the terpenoids (E)-4,8-dimethylnona-1,3,7-triene (DMNT) and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) in higher amounts in A. occidentale. In further behavioural bioassays, female D. citri spent less time in arms containing a synthetic blend of DMNT and TMTT compared to the control arms. Female D. citri also spent less time in arms containing the synthetic blend in combination with volatile extracts from either M. paniculata or C. sinensis compared to the control arms. Results suggest that higher release of the two terpenoids by A. occidentale make this species unattractive to D. citri, and that the terpenoids could be used in reducing colonisation of citrus plants and therefore HLB infection.

Concepts: Citrus, Fruit, Cashew, Psidium guajava, Guava, Rutaceae, Anacardiaceae, Murraya paniculata

0

Different parts of Murraya paniculata have been used traditionally for treating several ailments including mental disorders. The present study was designed to evaluate the antianxiety and antidepressant potential of M. paniculata leaves using elevated plus maze model and forced swim test, respectively.

Concepts: Energy, Mental disorder, Murraya paniculata

0

Three new indole alkaloid derivatives, named paniculidines D‒F (1‒3), and six known analogs (4‒9) were isolated from the roots of Murraya paniculata. The structures were elucidated on the basis of comprehensive HRESIMS, UV, IR, and NMR spectroscopic data analysis and comparison with the data reported in literature. The absolute configurations of new compounds were assigned via the determination of specific optical rotation, Mosher’s method, and ECD spectra. Compound 3 is the first heterodimer of C-N linked indole and coumarin derivatives.

Concepts: Scientific method, Data, Infrared, Optical rotation, Specific rotation, Murraya paniculata

0

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii, Citrus aurantifolia, Citrus macrophylla, Citrus maxima, Citrus taiwanica and Murraya paniculata. Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica. Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla. This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences.

Concepts: Plant, Citrus, Fruit, Grapefruit, Rutaceae, Tangelo, Huanglongbing, Murraya paniculata

0

Four hitherto unknown prenylated coumarins, namely 6″-O-β-D-apiofuranosylapterin (1), 4'-O-isobutyroylpeguangxienin (2), 6-(3-methyl-2-oxobutyroyl)-7-methoxycoumarin (3), and 6-hydroxycoumurrayin (4), were isolated from the ethanol extract of Heracleum stenopterum, Peucedanum praeruptorum, Clausena lansium, and Murraya paniculata, respectively. Their chemical structures were established on the basis of extensive spectroscopic analysis. Compound 2 exhibited in vitro cytotoxic activity against five human cancer cell lines (HL-60, A-549, SMMC-7721, MCF-7, and SW-480) with IC50 values ranging from 15.9 to 23.2 μM.

Concepts: Spectroscopy, Cell, Cancer, Breast cancer, Cell culture, Chemical element, Chemical structure, Murraya paniculata

0

A ~56 kDa protein having hemagglutination activity was purified and characterized from the Murraya paniculata seeds. The gel electrophoresis studies demonstrated that protein is primarily of two different subunits, molecular weight ~ 35 and 21 kDa held together by disulfide-linkages and predominantly by secondary forces. The cloning and sequence analysis revealed that the protein exhibited a substantial sequence identity to seed storage 11S globulin family proteins. The sequence analysis of Murraya paniculata globulin (MPG) demonstrated higher and lower molecular weight polypeptides to be acidic (α) and basic (β) respectively. The sequence analysis further showed that it possesses a characteristic bi-cupin motif and a putative metal binding pocket. CD analysis revealed that the MPG was a β/α protein with a slightly higher content of the former. Conformational changes in protein have been studied by fluorescence spectrometry by using various chemical treatments. The results demonstrated that MPG belongs to 11S globulin family and exhibit's hemagglutination activity, which implicates it to be possessing lectin-like property.

Concepts: Protein, Molecular biology, Molecule, Mass, Gel electrophoresis, Atomic mass unit, Protein electrophoresis, Murraya paniculata

0

Murraya paniculata is traditionally used for management of gut, air way and cardiovascular disorders. The study was conducted for provision of pharmacological rationalization for folkloric uses of Murraya paniculata in gut, air way and cardiovascular problems.

Concepts: Cardiovascular disease, Murraya paniculata