Discover the most talked about and latest scientific content & concepts.

Concept: Multicellular organism


Current theories attribute aging to a failure of selection, due to either pleiotropic constraints or declining strength of selection after the onset of reproduction. These theories implicitly leave open the possibility that if senescence-causing alleles could be identified, or if antagonistic pleiotropy could be broken, the effects of aging might be ameliorated or delayed indefinitely. These theories are built on models of selection between multicellular organisms, but a full understanding of aging also requires examining the role of somatic selection within an organism. Selection between somatic cells (i.e., intercellular competition) can delay aging by purging nonfunctioning cells. However, the fitness of a multicellular organism depends not just on how functional its individual cells are but also on how well cells work together. While intercellular competition weeds out nonfunctional cells, it may also select for cells that do not cooperate. Thus, intercellular competition creates an inescapable double bind that makes aging inevitable in multicellular organisms.

Concepts: Gene, Genetics, Cell, Natural selection, Organism, Developmental biology, Multicellular organism, Pleiotropy


Multicellularity is characterized by cooperation among cells for the development, maintenance and reproduction of the multicellular organism. Cancer can be viewed as cheating within this cooperative multicellular system. Complex multicellularity, and the cooperation underlying it, has evolved independently multiple times. We review the existing literature on cancer and cancer-like phenomena across life, not only focusing on complex multicellularity but also reviewing cancer-like phenomena across the tree of life more broadly. We find that cancer is characterized by a breakdown of the central features of cooperation that characterize multicellularity, including cheating in proliferation inhibition, cell death, division of labour, resource allocation and extracellular environment maintenance (which we term the five foundations of multicellularity). Cheating on division of labour, exhibited by a lack of differentiation and disorganized cell masses, has been observed in all forms of multicellularity. This suggests that deregulation of differentiation is a fundamental and universal aspect of carcinogenesis that may be underappreciated in cancer biology. Understanding cancer as a breakdown of multicellular cooperation provides novel insights into cancer hallmarks and suggests a set of assays and biomarkers that can be applied across species and characterize the fundamental requirements for generating a cancer.

Concepts: DNA, Gene, Cell, Organism, Life, Developmental biology, Cellular differentiation, Multicellular organism


The bone marrow niche represents a specialized environment that regulates mesenchymal stem cell quiescence and self-renewal, yet fosters stem cell migration and differentiation upon demand. An in vitro model that embodies these features would open up the ability to perform detailed study of stem cell behaviour. In this paper we present a simple bone marrow-like niche model, which comprises of nanomagnetically levitated stem cells cultured as multicellular spheroids within a type I collagen gel. The stem cells maintained are nestin positive and remain quiescent until regenerative demand is placed upon them. In respond to co-culture wounding they migrate and appropriately differentiate upon engraftment. This tissue engineered regeneration-responsive bone marrow-like niche model will allow for greater understanding of stem cell response to injury, but also facilitate as a testing platform for drug candidates in a multi-well plate format.

Concepts: Collagen, Developmental biology, Stem cell, Mesenchymal stem cell, Bone marrow, Stem cells, Cellular differentiation, Multicellular organism


Cells move along surfaces both as single cells and multi-cellular units. Recent research points toward pivotal roles for water flux through aquaporins (AQPs) in single cell migration. Their expression is known to facilitate this process by promoting rapid shape changes. However, little is known about the impact on migrating epithelial sheets during wound healing and epithelial renewal. Here, we investigate and compare the effects of AQP9 on single cell and epithelial sheet migration. To achieve this, MDCK-1 cells stably expressing AQP9 were subjected to migration assessment. We found that AQP9 facilitated cell locomotion at both the single and multi-cellular level. Furthermore, we identified major differences in the monolayer integrity and cell size upon expression of AQP9 during epithelial sheet migration, indicating a rapid volume-regulatory mechanism. We suggest a novel mechanism for epithelial wound healing based on AQP-induced swelling and expansion of the monolayer.

Concepts: DNA, Gene, Cell nucleus, Cell, Organism, Wound healing, Epithelium, Multicellular organism


Programmed cell death (PCD) is a ubiquitous feature of multicellular and unicellular organisms. Eukaryotic microbes use PCD to regulate the development of specialized cells and structures. Many different types of PCD occur, ranging from apoptosis-like cell death, programmed necrosis and autophagic death. An overview of cell death pathways is undertaken, highlighting new elements in the PCD molecular machinery. Examples of PCD in cellular differentiation are explored alongside evolutionary scenarios that could initiate and maintain PCD in microbes, including the evolution of multicellularity. The finding that defects in PCD can lead to antimicrobial drug resistance is also considered. Greater understanding of PCD and its role in differentiation offers new hope for discovery of therapeutic agents that manipulate endogenous cell suicide pathways.

Concepts: DNA, Archaea, Bacteria, Organism, Eukaryote, Developmental biology, Prokaryote, Multicellular organism


Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature’s astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success. Key words: Lung, development, tracheal system, branching morphogenesis, growth factors.

Concepts: DNA, Gene, Gene expression, Evolution, Lung, Developmental biology, Cellular differentiation, Multicellular organism


In multicellular organisms, cells adopt various shapes, from flattened sheets of endothelium to dendritic neurons, that allow the cells to function effectively. Here, we elucidated the unique shape of cells in the cornified stratified epithelia of the mammalian epidermis that allows them to achieve homeostasis of the tight junction (TJ) barrier. Using intimate in vivo 3D imaging, we found that the basic shape of TJ-bearing cells is a flattened Kelvin’s tetrakaidecahedron (f-TKD), an optimal shape for filling space. In vivo live imaging further elucidated the dynamic replacement of TJs on the edges of f-TKD cells that enables the TJ-bearing cells to translocate across the TJ barrier. We propose a spatiotemporal orchestration model of f-TKD cell turnover, where in the classic context of ‘form follows function’, cell shape provides a fundamental basis for the barrier homeostasis and physical strength of cornified stratified epithelia.

Concepts: Cell nucleus, Cell, Organism, Cell membrane, Chromosome, Epithelium, Cell wall, Multicellular organism


In multicellular organisms, a stringent control of the transition between cell division and differentiation is crucial for correct tissue and organ development. In the Arabidopsis root, the boundary between dividing and differentiating cells is positioned by the antagonistic interaction of the hormones auxin and cytokinin. Cytokinin affects polar auxin transport, but how this impacts the positional information required to establish this tissue boundary, is still unknown. By combining computational modeling with molecular genetics, we show that boundary formation is dependent on cytokinin’s control on auxin polar transport and degradation. The regulation of both processes shapes the auxin profile in a well-defined auxin minimum. This auxin minimum positions the boundary between dividing and differentiating cells, acting as a trigger for this developmental transition, thus controlling meristem size.

Concepts: DNA, Gene expression, Cell, Developmental biology, Stem cell, Cellular differentiation, Multicellular organism, Polar auxin transport


The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called “van Gogh bundles”) of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

Concepts: DNA, Bacteria, Developmental biology, Cellular differentiation, Interaction, Cell type, Bacillus subtilis, Multicellular organism


As the closest unicellular relatives of animals, choanoflagellates serve as useful model organisms for understanding the evolution of animal multicellularity. An important factor in animal evolution was the increasing ocean oxygen levels in the Precambrian, which are thought to have influenced the emergence of complex multicellular life. As a first step in addressing these conditions, we study here the response of the colony-forming choanoflagellate Salpingoeca rosetta to oxygen gradients. Using a microfluidic device that allows spatio-temporal variations in oxygen concentrations, we report the discovery that S. rosetta displays positive aerotaxis. Analysis of the spatial population distributions provides evidence for logarithmic sensing of oxygen, which enhances sensing in low oxygen neighborhoods. Analysis of search strategy models on the experimental colony trajectories finds that choanoflagellate aerotaxis is consistent with stochastic navigation, the statistics of which are captured using an effective continuous version based on classical run-and-tumble chemotaxis.

Concepts: Photosynthesis, Cell, Bacteria, Organism, Developmental biology, Animal, Multicellular organism, Choanoflagellate