Discover the most talked about and latest scientific content & concepts.

Concept: Mulch


The fate of chlortetracycline (CTC), sulfadiazine (SDZ) and ciprofloxacin (CIP) during composting of swine manure and their effect on composting process were investigated. Swine manure was spiked with antibiotics, mixed with saw dust (1:1 on DW basis) and composted for 56d. Antibiotics were spiked to a final concentration of 50mg/kg CTC+10mg/kg SDZ+10mg/kg CIP (High-level) or 5mg/kg CTC+1mg/kg SDZ+1mg/kg CIP (Low-level), and a control without antibiotics. Antibiotics at high concentrations delayed the initial decomposition that also affected the nitrogen mineralization. CTC and SDZ were completely removed from the composting mass within 21 and 3d, respectively; whereas, 17-31% of the spiked CIP remained in the composting mass. Therefore, composting could effectively remove the CTC and SDZ spiked even at high concentrations, but the removal of ciprofloxacin (belonging to fluoroquinolone) needs to be improved, indicating this antibiotic may get into the ecosystem through land application of livestock compost.

Concepts: Agriculture, Fertilizer, Humus, Quinolone, Compost, Composting, Vermicompost, Mulch


The cultivation of Lactarius deliciosus (saffron milk cap) in New Zealand began in 2002 when fruiting bodies were produced in an Otago plantation of Pinus radiata seedlings artificially mycorrhized by L. deliciosus. In 2007, 42 P. radiata seedlings mycorrhized by L. deliciosus under controlled conditions were planted in a grass field at Plant and Food Research (Lincoln, Canterbury). The effects of pine bark mulch application and initial degree of mycorrhization of seedlings were examined to determine their influence on tree growth, development of mycorrhizae (i.e. their multiplication on the root system and their degree of branching) and fruiting body production. Mulch application increased tree growth significantly over 4 years. High initial mycorrhization slightly stimulated tree growth over 2 years. The initial degree of mycorrhization was positively, but not strongly, related to the persistence and development of L. deliciosus mycorrhizae and rhizomorphs based on root sample analyses 2 years after planting. However, mulching strongly reduced the proportion of highly branched L. deliciosus mycorrhizae compared with poorly ramified ones. A positive correlation was observed between the fruiting of L. deliciosus and the development of mycorrhizae. Mulching delayed the onset of fruiting body production. In 2010, fruiting bodies were produced only from non-mulched trees with eight of these (38 %) producing a total of 12 fruiting bodies. In 2011, 19 non-mulched trees (90 %) and 9 mulched trees (45 %) produced 143 and 47 fruiting bodies, respectively, totalling 190 fruiting bodies. By 2012, 19 non-mulched trees (90 %) and 13 mulched trees (65 %) produced 333 and 236 fruiting bodies, respectively, totalling 569 fruiting bodies (c. 30 kg). This study presents new information on factors influencing the onset of fruiting and the development of yields in a plantation of P. radiata mycorrhized by L. deliciosus. Projected yields as high as c. 300 kg/ha from the third year of production reiterate the feasibility of farming saffron milk cap in P. radiata plantations in New Zealand. Continued monitoring of this site and development of similar trials will provide important knowledge for the optimisation of yields in commercial saffron milk cap orchards.

Concepts: Root, Pine, Russulaceae, Mulch, Lactarius, Lactarius deliciosus, Lactarius deterrimus


Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

Concepts: Affect, Sea, Iran, Russia, Caspian Sea, Azerbaijan, Mulch, Plastic mulch


Mulching management has been used in many places all over the world to improve agricultural sustainability. However, the cycling of carbon in the soil under applications of mulch on sloping arable land is not yet fully understood. A four-year field experiment was carried out in Xiaofuling watershed of Danjiangkou reservoir in China. The object was to evaluate the effects of the application of straw mulch (ST) and grass mulch (GT) on dynamic changes in soil organic carbon and its fractions. Results showed that mulch applied on the soil surface increased the contents of SOC and its active fractions in the soil. Compared to the control without cover (CK), ST and GT treatments increased the contents of SOC, LOC, DOC, POC and EOC by 14.73%, 16.5%, 22.5%, 41.5% and 21%, respectively, in the 0-40 cm soil layer, and by 17%, 14%, 19%, and 30%, respectively, in the 0-100 cm soil layer. The contents of organic carbon and its active fractions decreased with increasing soil depth in all of the treatments. SOC was accumulated in the period of December to the following March. The contents of soil DOC and LOC were high in January to March, while the contents of soil POC and EOC were high in June to September. The relative contents of soil organic carbon fractions were POC > EOC > LOC > DOC over the four years. Straw mulching had no significant effect on the changes in soil organic carbon active fractions during the different periods. Based on this long-term field experiment in Danjiangkou reservoir, we found that straw mulching had a significant effect on soil, increasing SOC content and stock in slopping arable land, and that live grass mulching was more effective than rice straw mulching. We discuss possible optimal periods for the implementation of mulching practices on sloping land.

Concepts: Agriculture, Soil, Geology, Humus, Compost, Straw, Mulch, Permaculture


This study provides a descriptive analysis of the taphonomic changes produced by passing over skeletonized remains (n = 4, Sus scrofa) with three common lawn mowers. Two skeletons were mowed over with a riding lawn mower set at multiple blade heights (10.16, 7.62, 5.08 cm) and one each with a rotary mower (9.53, 6.35 cm) and a mulching mower (6.35 cm). Results show that different types of common lawn mowers will produce different patterns of bone dispersal and fragmentation rates. Overall, skeletal elements projecting upward from the surface frequently exhibited a sheared morphology characterized by a smooth, flat, cut surface (7.0-7.6% of elements). The push mowers yielded a higher frequency of undamaged bone than the riding mower (54.8-61.2% vs. 17.7%), and the riding mower created more catastrophic damage to skeletal elements. Additionally, each mower produced a distinct dispersal pattern of skeletal fragments. The dispersal patterns have been identified as “bull’s-eye” (riding), circular (mulching), and discontinuous rectangle (rotary).

Concepts: Tractor, Skeleton, Lawn mower, Mower, Lawn, Mulch, Ransomes, Sims & Jefferies


Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers and public perception from both a psychological and economic perspective in order to develop new support strategies for the transition into a more environment-friendly food production.

Concepts: Time, Agriculture, Soil, Economics, Term, Irrigation, Mulch, Plastic mulch


Mulching is critical for increasing water availability and hence winter wheat production in dryland farming systems. A two-year study was conducted to assess the effects of mulches on soil water storage (SWS), temperature, water use efficiency (WUE) and yields of winter wheat on the Loess Plateau. Four treatments were examined: conventional flat planting (CK), straw mulch (FPS), transparent plastic film mulch (FPP) and ridge-furrow with plastic film-mulched ridge and straw-mulched furrow (RFPS). Compared with CK, RFPS greatly increased SWS from 0-60 cm, FPP increased SWS from 0-40 cm, and FPS slightly increased SWS from 0-60 cm; however, FPP significantly (P < 0.05) decreased SWS from 61-100 cm. RFPS and FPP increased soil temperatures in cold seasons relative to CK, especially in RFPS (2.0-2.3 °C). Meanwhile, the rate of soil temperature increase was greater in RFPS and FPP than in CK but was lower in FPS. Mean yields were significantly increased in RFPS (56.78%), FPP (44.72%) and FPS (9.57%), and WUE was significantly increased in RFPS (44.04%) and in FPP (37.50%) compared with CK (P < 0.05). We conclude that ridge-furrow planting with plastic film-mulched ridge and straw-mulched furrow has a good potential for raising winter wheat production on the Loess Plateau.

Concepts: Water, Temperature, Wheat, Erosion, Loess, Winter wheat, Mulch, Dryland farming


Polyethylene mulch films used in agriculture are a major source of plastic pollution in soils. Biodegradable plastics have been introduced as alternative to commonly-used polyethylene. Here we studied the interaction of earthworms (Lumbricus terrestris) with polyethylene and biodegradable plastic mulches. The objective was to assess whether earthworms would select between different types of mulches when foraging for food, and whether they drag macroscopic plastic mulch into the soil. Laboratory experiments were carried out with earthworms in Petri dishes and mesocosms. The treatments were standard polyethylene mulch, four biodegradable plastic mulches (PLA/PHA [polylactic acid/polyhydroxy alkanoate], Organix, BioAgri, Naturecycle), a biodegradable paper mulch (WeedGuardPlus), and poplar litter, which served as control. Four and three replicates for the Petri dish and mesocosm experiments were used, respectively. Macroscopic plastic and paper mulch pieces (1.5 cm × 1.5 cm and 2 cm × 2 cm) were collected from an agricultural field after a growing season, after being buried in the soil for 6 and 12 months, and after being composted for 2 weeks. We found that earthworms did not ingest polyethylene. Field-weathered biodegradable plastic mulches were not ingested either, however, after soil burial and composting, some biodegradable plastics were eaten and could not be recovered from soil any longer. Earthworms, when foraging for food, dragged plastic mulch, including polyethylene and biodegradable plastic, and poplar leaves into their burrows. The burial of macroscopic plastic mulch underground led to a redistribution of plastics in the soil profile, and likely enhances the degradation of biodegradable mulches in soil, but also can lead to leaching of plastic fragments by macropore flow.

Concepts: Agriculture, Soil, Plastic, Recyclable materials, Bioplastic, Lumbricus terrestris, Biodegradable plastic, Mulch


To determine whether the living hyperaccumulator plants and their straws have the same effects on the growth and heavy metal accumulation of common plants, two pot experiments (intercropping experiment and straw mulch experiment) were conducted to study the effects of living hyperaccumulator plants (Solanum photeinocarpum, Tagetes erecta, Galinsoga parviflora and Bidens pilosa) and their straws on the growth and cadmium (Cd) accumulation of common plant Cyphomandra betacea seedlings. Intercropping with T. erecta or B. pilosa promoted the growth of C. betacea seedlings compared with the monoculture, while intercropping with S. photeinocarpum or G. parviflora inhibited that. Intercropping with S. photeinocarpum decreased the Cd contents in the roots and shoots of C. betacea seedlings compared with the monoculture, but intercropping with the other plants did not. In the straw mulch experiment, the straw of S. photeinocarpum or T. erecta promoted the growth of C. betacea seedlings compared with the control, while the straw of G. parviflora or B. pilosa did not. The straw of S. photeinocarpum or T. erecta decreased the Cd contents in the shoots of C. betacea seedlings, and the straw of G. parviflora or B. pilosa increased the shoot Cd contents. Thus, intercropping with S. photeinocarpum and applying S. photeinocarpum or T. erecta straw can reduce the Cd uptake of C. betacea.

Concepts: Solanum, Plant morphology, The Roots, Bidens, Mulch, Bidens pilosa, Tagetes erecta, Galinsoga parviflora


Winter cover crop mulches can diversify agricultural habitats and provide a range of benefits for crop production and pest management. Here we report the influence of strip tilled winter cover crop mulches on arthropod abundance in organic vegetable plots. Crookneck squash (Cucurbita pepo L.; Cucurbitales: Cucurbitaceae) was direct seeded into mowed and strip tilled barley (Hordeum vulgare L.; Poales: Poaceae), crimson clover (Trifolium incarnatum L.; Fabales: Fabaceae), a barley + crimson clover mixture, or a no-cover crop control. Arthropods on squash plants were assessed weekly using visual counts. Seed predation was assessed using weed seed arenas. In 2013, mixed species cover crops produced the most ground cover, fewest weeds, and largest squash plants, but herbivore and predator abundance were not correlated with any of those factors. In 2014, mixed species cover crops again produced the most ground cover and fewest weeds, but the largest squash plants were found in no-cover crop control plots, which also had the highest herbivore abundance per plant. Predator and herbivore abundance were positively correlated with squash plant size in 2014. There were no differences in seed predation across treatments. Differences in ground cover biomass and weed presence between the 2 yr may have contributed to differences in squash plant quality and subsequent herbivore abundance between seasons. Results suggest that arthropods on plants responded largely indirectly to cover crops through host plant quality. Results are interpreted in light of overall costs and benefits of cover cropping.

Concepts: Plant, Crops, Green manure, Clover, Cucurbita, Mulch, Cover crop, Trifolium incarnatum