Discover the most talked about and latest scientific content & concepts.

Concept: Mouse


Resveratrol is a bioactive polyphenol enriched in red wine that exhibits many beneficial health effects via multiple mechanisms. However, it is unclear whether resveratrol is beneficial for the prevention of food allergy. This study investigated whether resveratrol inhibited the development of food allergy by using a mouse model of the disease.

Concepts: Human, Nutrition, Allergy, Mouse, Resveratrol, Wine, Polyphenol, French Paradox


Studies on bimatoprost were performed with two objectives: (i) to determine whether bimatoprost possesses hair growth-stimulating properties beyond eyelash hypertrichosis and (ii) to investigate the biodisposition of bimatoprost in skin for the first time. Bimatoprost, at the dose used clinically for eyelash growth (0.03%) and given once daily for 14 days, increased pelage hair growth in C57/black 6 mice. This occurred as a much earlier onset of new hair growth in shaved mice and the time taken to achieve complete hair regrowth, according to photographic documentation and visual assessment. Bimatoprost biodisposition in the skin was determined at three concentrations: 0.01%, 0.03% and 0.06%. Dose-dependent C(max) values were obtained (3.41, 6.74, 12.3 μg/g tissue), and cutaneous bimatoprost was well maintained for 24 h following a single dose. Bimatoprost was recovered from the skin only as the intact molecule, with no detectable levels of metabolites. Thus, bimatoprost produces hypertrichosis as the intact molecule.

Concepts: Skin, Tissue, According to Jim, Mouse, Hair follicle, Keratin, Facial hair, Hair removal


BACKGROUND: A specific and sensitive UPLC-qTOF-MS/MS method has been developed for the simultaneous determination of curcuminoids. These Curcuminoids comprises of curcumin, a principal curcuminoid and other two namely, demethoxycurcumin, and bisdemethoxycurcumin obtained from rhizomes of Curcuma longa an ancient Indian curry spice turmeric, family (Zingiberaceae), METHODS: These analytes were separated on a reverse phase C18 column by using a mobile phase of acetonitrile: 5% acetonitrile in water with 0.07% acetic acid (75:25 v/v), flow rate of 100 muL/min was maintained. The qTOF-MS was operated under multiple reaction monitoring (MRM) mode using electro-spray ionization (ESI) technique with positive ion polarity. The major product ions in the positive mode for curcuminoids were at m/z 369.1066, 339.1023 and 309.0214 respectively. The recovery of the analytes from mouse plasma was optimized using solid phase extraction technique. RESULTS: The total run time was 5 min and the peaks of the compounds, bisdemethoxycurcumin, demethoxycurcumin and curcumin occurred at 2.06, 2.23 and 2.40 min respectively. The calibration curves of bisdemethoxycurcumin, demethoxycurcumin and curcumin were linear over the concentration range of 2–1000 ng/mL (r2, 0.9951), 2–1000 ng/mL (r2, 0.9970) and 2-1000 ng/mL (r2, 0.9906) respectively.Intra-assay and inter-assay accuracy in terms of% bias for curcumin was in between -7.95to +6.21, and -7.03 to + 6.34; for demethoxycurcumin was -6.72 to +6.34, and -7.86 to +6.74 and for bisdesmetoxycurcumin was -8.23 to +6.37 and -8.47 to +7.81. The lower limit of quantitation for curcumin, demethoxycurcumin and bisdemethoxycurcumin was 2.0 ng/mL. Analytes were stable under various conditions (in autosampler, during freeze-thaw, at room temperature, and under deep-freeze conditions). This validated method was used during pharmacokinetic studies of curcumin in the mouse plasma. CONCLUSIONS: A specific, accurate and precise UPLC-qTOF-MS/MS method for the determination of curcumin, demethoxycurcumin and bisdemethoxycurcumin both individually and simultaneously was optimized.

Concepts: Analytical chemistry, Ion, Mouse, Curcuma, Turmeric, Curcumin, Zingiberaceae, Curry


Japanese encephalitis virus (JEV) causes acute central nervous system (CNS) disease in humans, in whom the clinical symptoms vary from febrile illness to meningitis and encephalitis. However, the mechanism of severe encephalitis has not been fully elucidated. In this study, using a mouse model, we investigated the pathogenetic mechanisms that correlate with fatal JEV infection. Following extraneural infection with the JaOArS982 strain of JEV, infected mice exhibited clinical signs ranging from mild to fatal outcome. Comparison of the pathogenetic response between severe and mild cases of JaOArS982-infected mice revealed increased levels of TNF-α in the brains of severe cases. However, unexpectedly, the mortality rate of TNF-α KO mice was significantly increased compared with that of WT mice, indicating that TNF-α plays a protective role against fatal infection. Interestingly, there were no significant differences of viral load in the CNS between WT and TNF-α KO mice. However, exaggerated inflammatory responses were observed in the CNS of TNF-α KO mice. Although these observations were also obtained in IL-10 KO mice, the mortality and enhanced inflammatory responses were more pronounced in TNF-α KO mice. Our findings therefore provide the first evidence that TNF-α has an immunoregulatory effect on pro-inflammatory cytokines in the CNS during JEV infection and consequently protects the animals from fatal disease. Thus, we propose that the increased level of TNF-α in severe cases was the result of severe disease, and secondly that immunopathological effects contribute to severe neuronal degeneration resulting in fatal disease. In future, further elucidation of the immunoregulatory mechanism of TNF-α will be an important priority to enable the development of effective treatment strategies for Japanese encephalitis.

Concepts: Inflammation, Central nervous system, Nervous system, Brain, Infection, Symptom, Mouse, Encephalitis


A20 has been suggested to limit NF-κB activation by removing regulatory ubiquitin chains from ubiquitinated substrates. A20 is a ubiquitin-editing enzyme that removes K63-linked ubiquitin chains from adaptor proteins, such as RIP1, and then conjugates them to K48-linked polyubiquitin chains to trigger proteasomal degradation. To determine the role of the deubiquitinase function of A20 in downregulating NF-κB signaling, we have generated a knock-in mouse that lacks the deubiquitinase function of A20 (A20-OTU mice). These mice are normal and have no signs of inflammation, have normal proportions of B, T, dendritic, and myeloid cells, respond normally to LPS and TNF, and undergo normal NF-κB activation. Our results thus indicate that the deubiquitinase activity of A20 is dispensable for normal NF-κB signaling.

Concepts: Protein, Gene, Enzyme, Normal distribution, Proteasome, Ubiquitin, Mouse, Normality


Despite advances to targeted leishmanicidal chemotherapy, defies around severe toxicity, recent emergence of resistant variants and absence of rational vaccine still persist. This necessitates search and/or progressive validation of accessible medicinal remedies including plant based. The study examined both in vivo and in vitro response of L. major infection to combined therapy of Ricinus communis and Azadirachta indica extracts in BALB/c mice as the mouse model. A comparative study design was applied.

Concepts: Immune system, Animal testing, In vivo, In vitro, Rat, Rodent, Mouse, Mice


Severe amyloidosis and plaque-localized neuro-inflammation are key pathological features of Alzheimer’s disease (AD). In addition to astrocyte and microglial reactivity, emerging evidence suggests a role of gut microbiota in regulating innate immunity and influencing brain function. Here, we examine the role of the host microbiome in regulating amyloidosis in the APPSWE/PS1ΔE9 mouse model of AD. We show that prolonged shifts in gut microbial composition and diversity induced by long-term broad-spectrum combinatorial antibiotic treatment regime decreases Aβ plaque deposition. We also show that levels of soluble Aβ are elevated and that levels of circulating cytokine and chemokine signatures are altered in this setting. Finally, we observe attenuated plaque-localised glial reactivity in these mice and significantly altered microglial morphology. These findings suggest the gut microbiota community diversity can regulate host innate immunity mechanisms that impact Aβ amyloidosis.

Concepts: Immune system, Neuron, Bacteria, Gut flora, Innate immune system, Antibiotic, Mouse, Animal model


Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species' olfactory sensitivity. Analysis of odor structure-activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity.

Concepts: Human, Predation, Olfaction, Olfactory system, Primate, Odor, Mouse, Parts-per notation


Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.

Concepts: Time, Measurement, Rodent, Circadian rhythm, Entrainment, Mouse


Amyloid-β (Aβ) peptide has been implicated in the pathogenesis of Alzheimer’s disease (AD). We present a nonpharmacological approach for removing Aβ and restoring memory function in a mouse model of AD in which Aβ is deposited in the brain. We used repeated scanning ultrasound (SUS) treatments of the mouse brain to remove Aβ, without the need for any additional therapeutic agent such as anti-Aβ antibody. Spinning disk confocal microscopy and high-resolution three-dimensional reconstruction revealed extensive internalization of Aβ into the lysosomes of activated microglia in mouse brains subjected to SUS, with no concomitant increase observed in the number of microglia. Plaque burden was reduced in SUS-treated AD mice compared to sham-treated animals, and cleared plaques were observed in 75% of SUS-treated mice. Treated AD mice also displayed improved performance on three memory tasks: the Y-maze, the novel object recognition test, and the active place avoidance task. Our findings suggest that repeated SUS is useful for removing Aβ in the mouse brain without causing overt damage, and should be explored further as a noninvasive method with therapeutic potential in AD.

Concepts: Alzheimer's disease, Brain, Human brain, Cognition, Peptide, Memory, Rat, Mouse