SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mount Vesuvius

207

Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

Concepts: Rock, Volcano, Magma, Lava, Caldera, Mount Vesuvius, 1980 eruption of Mount St. Helens, Plinian eruption

63

Crystals formed prior to a volcanic event can provide evidence of processes leading to and timing of eruptions. Clinopyroxene is common in basaltic to intermediate volcanoes, however, its ability as a recorder of pre-eruptive histories has remained comparatively underexplored. Here we show that novel high-resolution trace element images of clinopyroxene track eruption triggers and timescales at Mount Etna (Sicily, Italy). Chromium (Cr) distribution in clinopyroxene from 1974 to 2014 eruptions reveals punctuated episodes of intrusion of primitive magma at depth. Magma mixing efficiently triggered volcanism (success rate up to 90%), within only 2 weeks of arrival of mafic intrusions. Clinopyroxene zonations distinguish between injections of mafic magma and regular recharges with more evolved magma, which often fail to tip the system to erupt. High Cr zonations can therefore be used to reconstruct past eruptions and inform responses to geophysical signals of volcano unrest, potentially offering an additional approach to volcano hazard monitoring.

Concepts: Volcano, Sicily, Magma, Basalt, Lava, Volcanology, Mount Vesuvius, Decade Volcanoes

60

Among the paintings and engravings found in the Chauvet-Pont d'Arc cave (Ardèche, France), several peculiar spray-shape signs have been previously described in the Megaloceros Gallery. Here we document the occurrence of strombolian volcanic activity located 35 km northwest of the cave, and visible from the hills above the cave entrance. The volcanic eruptions were dated, using 40Ar/39Ar, between 29 ± 10 ka and 35 ± 8 ka (2σ), which overlaps with the 14C AMS and thermoluminescence ages of the first Aurignacian occupations of the cave in the Megaloceros Gallery. Our work provides the first evidence of an intense volcanic activity between 40 and 30 ka in the Bas-Vivarais region, and it is very likely that Humans living in the Ardèche river area witnessed one or several eruptions. We propose that the spray-shape signs found in the Chauvet-Pont d'Arc cave could be the oldest known depiction of a volcanic eruption, predating by more than 34 ka the description by Pliny the Younger of the Vesuvius eruption (AD 79) and by 28 ka the Çatalhöyük mural discovered in central Turkey.

Concepts: Volcano, Pompeii, Lava, Mount Vesuvius, Herculaneum, 79, Pliny the Elder, Plinian eruption

51

Hundreds of papyrus rolls, buried by the eruption of Mount Vesuvius in 79 AD and belonging to the only library passed on from Antiquity, were discovered 260 years ago at Herculaneum. These carbonized papyri are extremely fragile and are inevitably damaged or destroyed in the process of trying to open them to read their contents. In recent years, new imaging techniques have been developed to read the texts without unwrapping the rolls. Until now, specialists have been unable to view the carbon-based ink of these papyri, even when they could penetrate the different layers of their spiral structure. Here for the first time, we show that X-ray phase-contrast tomography can reveal various letters hidden inside the precious papyri without unrolling them. This attempt opens up new opportunities to read many Herculaneum papyri, which are still rolled up, thus enhancing our knowledge of ancient Greek literature and philosophy.

Concepts: Medical imaging, Greek language, Pompeii, Ancient Rome, Mount Vesuvius, Herculaneum, 79

11

Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.

Concepts: Pumice, Volcano, Sicily, Magma, Lava, Volcanology, Mount Vesuvius, Volcanic gas

10

The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.

Concepts: Monte Carlo, Writing, Paper, Pen, Composition studies, Mount Vesuvius, Herculaneum, 79

5

The influence of a sophisticated water distribution system on urban development in Roman times is tested against the impact of Vesuvius volcanic activity, in particular the great eruption of AD 79, on all of the ancient cities of the Bay of Naples (Neapolis). Written accounts on urbanization outside of Rome are scarce and the archaeological record sketchy, especially during the tumultuous fifth and sixth centuries AD when Neapolis became the dominant city in the region. Here we show that isotopic ratios of lead measured on a well-dated sedimentary sequence from Neapolis' harbor covering the first six centuries CE have recorded how the AD 79 eruption was followed by a complete overhaul of Neapolis' water supply network. The Pb isotopic signatures of the sediments further reveal that the previously steady growth of Neapolis' water distribution system ceased during the collapse of the fifth century AD, although vital repairs to this critical infrastructure were still carried out in the aftermath of invasions and volcanic eruptions.

Concepts: Water, City, Volcano, Pompeii, Ancient Rome, Water supply network, Mount Vesuvius, Herculaneum

4

A collection of more than 1800 carbonized papyri, discovered in the Roman ‘Villa dei Papiri’ at Herculaneum is the unique classical library survived from antiquity. These papyri were charred during 79 A.D. Vesuvius eruption, a circumstance which providentially preserved them until now. This magnificent collection contains an impressive amount of treatises by Greek philosophers and, especially, Philodemus of Gadara, an Epicurean thinker of 1st century BC. We read many portions of text hidden inside carbonized Herculaneum papyri using enhanced X-ray phase-contrast tomography non-destructive technique and a new set of numerical algorithms for ‘virtual-unrolling’. Our success lies in revealing the largest portion of Greek text ever detected so far inside unopened scrolls, with unprecedented spatial resolution and contrast, all without damaging these precious historical manuscripts. Parts of text have been decoded and the ‘voice’ of the Epicurean philosopher Philodemus is brought back again after 2000 years from Herculaneum papyri.

Concepts: Philosophy, Ancient Rome, Roman Empire, Mount Vesuvius, Villa of the Papyri, Roman Republic, Epicureanism, Philodemus

3

Athabasca Valles is a near-equatorial martian outflow channel that contains many well-preserved features whose formation and composition have been a point of contention. Large plates of terrain that have clearly fractured and drifted may have once been ice rafts or the rocky solidification crust of a large lava flow. We have identified 269 spiral coils ranging from 5 to 30 meters wide on the polygonally patterned interplate terrain that are morphologically consistent with terrestrial lava coils that form in zones of flow shear. This patterned terrain also exhibits signs of fracture and drift, indicating that it is platelike as well. The coils in the Athabasca region are inconsistent with ice rheology, and the plates, spirals, and polygons are interpreted to be of volcanic origin.

Concepts: Earth, Mars, Angle, Volcano, Basalt, Lava, Mount Vesuvius, Shield volcano

1

Existing 3-D density models of the Somma-Vesuvius volcanic complex (SVVC), Italy, largely disagree. Despite the scientific and socioeconomic importance of Vesuvius, there is no reliable 3-D density model of the SVVC. A considerable uncertainty prevails concerning the presence (or absence) of a dense body underlying the Vesuvius crater (1944 eruption) that is implied from extensive seismic investigations. We have acquired relative gravity measurements at 297 stations, including measurements in difficult-to-access areas (e.g., the first-ever measurements in the crater). In agreement with seismic investigations, the simultaneous inversion of these and historic data resolves a high-density body that extends from the surface of the Vesuvius crater down to depths that exceed 2 km. A 1.5-km radius horseshoe-shaped dense feature (open in the southwestern sector) enforces the existing model of groundwater circulation within the SVVC. Based on its volcano-tectonic evolution, we interpret volcanic structures that have never been imaged before.

Concepts: Fundamental physics concepts, Density, Volcano, Relative density, Pompeii, Naples, Lava, Mount Vesuvius