Discover the most talked about and latest scientific content & concepts.

Concept: Motor neuron


BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder, caused by progressive loss of motor neurons. Changes are widespread in the subcortical white matter in ALS. Diffusion tensor imaging (DTI) detects pathological changes in white matter fibres in vivo, based on alterations in the degree (diffusivity, ADC) and directedness (fractional anisotropy, FA) of proton movement. METHODS: 24 patients with ALS and 24 age-matched controls received 1.5T DTI.FA and ADC were analyzed using statistical parametric mapping. In 15 of the 24 ALS patients, a second DTI was obtained after 6 months. RESULTS: Decreased FA in the corticospinal tract (CST) and frontal areas confirm existing results. With a direct comparison of baseline and follow-up dataset, the progression of upper motor neuron degeneration, reflected in FA decrease, could be captured along the CST and in frontal areas. The involvement of cerebellum in the pathology of ALS, as suspected from functional MRI studies, could be confirmed by a reduced FA (culmen, declive). These structural changes correlated well with disease duration, ALSFRS-R, and physical and executive functions. CONCLUSION: DTI detects changes that are regarded as prominent features of ALS and thus, shows promise in its function as a biomarker. Using the technique herein, we could demonstrate DTI changes at follow-up which correlated well with clinical progression.

Concepts: Spinal cord, Neuroimaging, Magnetic resonance imaging, Amyotrophic lateral sclerosis, Neurodegenerative disorders, Cerebellum, Motor neuron, Stephen Hawking


Mutations in SOD1 cause hereditary variants of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). Pathophysiology of the disease is non-cell-autonomous, with toxicity deriving also from glia. In particular, microglia contribute to disease progression. Methylene blue (MB) inhibits the effect of nitric oxide, which mediates microglial responses to injury. In vivo 2P-LSM imaging was performed in ALS-linked transgenic SOD1(G93A) mice to investigate the effect of MB on microglia-mediated inflammation in the spinal cord. Local superfusion of the lateral spinal cord with MB inhibited the microglial reaction directed at a laser-induced axon transection in control and SOD1(G93A) mice. In vitro, MB at high concentrations inhibited cytokine and chemokine release from microglia of control and advanced clinical SOD1(G93A) mice. Systemic MB-treatment of SOD1(G93A) mice at early preclinical stages significantly delayed disease onset and motor dysfunction. However, an increase of MB dose had no additional effect on disease progression; this was unexpected in view of the local anti-inflammatory effects. Furthermore, in vivo imaging of systemically MB-treated mice also showed no alterations of microglia activity in response to local lesions. Thus although systemic MB treatment had no effect on microgliosis, instead, its use revealed an important influence on motor neuron survival as indicated by an increased number of lumbar anterior horn neurons present at the time of disease onset. Thus, potentially beneficial effects of locally applied MB on inflammatory events contributing to disease progression could not be reproduced in SOD1(G93A) mice via systemic administration, whereas systemic MB application delayed disease onset via neuroprotection.

Concepts: Inflammation, Nervous system, Neuron, Spinal cord, Amyotrophic lateral sclerosis, Anti-inflammatory, Glial cell, Motor neuron


BACKGROUND: A proline-to-serine substitution at position-56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) causes a form of dominantly inherited motor neuron disease (MND), including typical and atypical amyotrophic lateral sclerosis (ALS) and a mild late-onset spinal muscular atrophy (SMA). VAPB is an integral endoplasmic reticulum (ER) protein and has been implicated in various cellular processes, including ER stress, the unfolded protein response (UPR) and Ca2+ homeostasis. However, it is unclear how the P56S mutation leads to neurodegeneration and muscle atrophy in patients. The formation of abnormal VAPB-positive inclusions by mutant VAPB suggests a possible toxic gain of function as an underlying mechanism. Furthermore, the amount of VAPB protein is reported to be reduced in sporadic ALS patients and mutant SOD1G93A mice, leading to the hypothesis that wild type VAPB plays a role in the pathogenesis of ALS without VAPB mutations. RESULTS: To investigate the pathogenic mechanism in vivo, we generated human wild type (wtVAPB) and mutant VAPB (muVAPB) transgenic mice that expressed the transgenes broadly in the CNS. We observed robust VAPB-positive aggregates in the spinal cord of muVAPB transgenic mice. However, we failed to find an impairment of motor function and motor neuron degeneration. We also did not detect any change in the endogenous VAPB level or evidence for induction of the unfolded protein response (UPR) and coaggregation of VAPA with muVAPB. Furthermore, we crossed these VAPB transgenic mice with mice that express mutant SOD1G93A and develop motor neuron degeneration. Overexpression of neither wtVAPB nor muVAPB modulated the protein aggregation and disease progression in the SOD1G93A mice. CONCLUSION: Overexpression of VAPBP56S mutant to approximately two-fold of the endogenous VAPB in mouse spinal cord produced abundant VAPB aggregates but was not sufficient to cause motor dysfunction or motor neuron degeneration. Furthermore, overexpression of either muVAPB or wtVAPB does not modulate the course of ALS in SOD1G93A mice. These results suggest that changes in wild type VAPB do not play a significant role in ALS cases that are not caused by VAPB mutations. Furthermore, these results suggest that muVAPB aggregates are innocuous and do not cause motor neuron degeneration by a gain-of-toxicity, and therefore, a loss of function may be the underlying mechanism.

Concepts: Spinal cord, Mutation, Muscle, Amyotrophic lateral sclerosis, Atrophy, Motor neuron, Motor neurone disease, Motor neuron disease


Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease’s specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D.

Concepts: Nervous system, Spinal cord, Histone deacetylase, Action potential, Axon, Myelin, Link, Motor neuron


Background Spinal muscular atrophy type 1 (SMA1) is a progressive, monogenic motor neuron disease with an onset during infancy that results in failure to achieve motor milestones and in death or the need for mechanical ventilation by 2 years of age. We studied functional replacement of the mutated gene encoding survival motor neuron 1 (SMN1) in this disease. Methods Fifteen patients with SMA1 received a single dose of intravenous adeno-associated virus serotype 9 carrying SMN complementary DNA encoding the missing SMN protein. Three of the patients received a low dose (6.7×10(13) vg per kilogram of body weight), and 12 received a high dose (2.0×10(14) vg per kilogram). The primary outcome was safety. The secondary outcome was the time until death or the need for permanent ventilatory assistance. In exploratory analyses, we compared scores on the CHOP INTEND (Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders) scale of motor function (ranging from 0 to 64, with higher scores indicating better function) in the two cohorts and motor milestones in the high-dose cohort with scores in studies of the natural history of the disease (historical cohorts). Results As of the data cutoff on August 7, 2017, all 15 patients were alive and event-free at 20 months of age, as compared with a rate of survival of 8% in a historical cohort. In the high-dose cohort, a rapid increase from baseline in the score on the CHOP INTEND scale followed gene delivery, with an increase of 9.8 points at 1 month and 15.4 points at 3 months, as compared with a decline in this score in a historical cohort. Of the 12 patients who had received the high dose, 11 sat unassisted, 9 rolled over, 11 fed orally and could speak, and 2 walked independently. Elevated serum aminotransferase levels occurred in 4 patients and were attenuated by prednisolone. Conclusions In patients with SMA1, a single intravenous infusion of adeno-associated viral vector containing DNA coding for SMN resulted in longer survival, superior achievement of motor milestones, and better motor function than in historical cohorts. Further studies are necessary to confirm the safety and efficacy of this gene therapy. (Funded by AveXis and others; number, NCT02122952 .).

Concepts: DNA, Gene, Neuromuscular junction, Gene therapy, Motor neuron, Motor neurone disease, Motor neuron disease, Spinal muscular atrophy


Electric eels can incapacitate prey with an electric discharge, but the mechanism of the eel’s attack is unknown. Through a series of experiments, I show that eel high-voltage discharges can activate prey motor neurons, and hence muscles, allowing eels to remotely control their target. Eels prevent escape in free-swimming prey using high-frequency volleys to induce immobilizing whole-body muscle contraction (tetanus). Further, when prey are hidden, eels can emit periodic volleys of two or three discharges that cause massive involuntary twitch, revealing the prey’s location and eliciting the full, tetanus-inducing volley. The temporal patterns of eel electrical discharges resemble motor neuron activity that induces fast muscle contraction, suggesting that eel high-voltage volleys have been selected to most efficiently induce involuntary muscle contraction in nearby animals.

Concepts: Spinal cord, Electricity, Muscle, Muscle contraction, Eel, Motor neuron, Alpha motor neuron, Electric eel


Over-expression of mutant copper, zinc superoxide dismutase (SOD) in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20years has extended lifespan by more than a few weeks. The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically human CCS causes mice co-expressing mutant SOD to die within two weeks of birth. Hypothesizing that co-expression of CCS created copper deficiency in spinal cord, we treated these pups with the PET-imaging agent CuATSM, which is known to deliver copper into the CNS within minutes. CuATSM prevented the early mortality of CCSxSOD mice, while markedly increasing Cu, Zn SOD protein in their ventral spinal cord. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within 3months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression. All ALS patients also express human CCS, raising the hope that familial SOD ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice.

Concepts: Spinal cord, Superoxide dismutase, Amyotrophic lateral sclerosis, Zinc, Copper, Motor neuron, SOD1, Copper deficiency


Motor units are the fundamental elements responsible for muscle movement. They are formed by lower motor neurons and their muscle targets, synapsed via neuromuscular junctions (NMJs). The loss of NMJs in neurodegenerative disorders (such as amyotrophic lateral sclerosis or spinal muscle atrophy) or as a result of traumatic injuries affects millions of lives each year. Developing in vitro assays that closely recapitulate the physiology of neuromuscular tissues is crucial to understand the formation and maturation of NMJs, as well as to help unravel the mechanisms leading to their degeneration and repair. We present a microfluidic platform designed to coculture myoblast-derived muscle strips and motor neurons differentiated from mouse embryonic stem cells (ESCs) within a three-dimensional (3D) hydrogel. The device geometry mimics the spinal cord-limb physical separation by compartmentalizing the two cell types, which also facilitates the observation of 3D neurite outgrowth and remote muscle innervation. Moreover, the use of compliant pillars as anchors for muscle strips provides a quantitative functional readout of force generation. Finally, photosensitizing the ESC provides a pool of source cells that can be differentiated into optically excitable motor neurons, allowing for spatiodynamic, versatile, and noninvasive in vitro control of the motor units.

Concepts: Stem cell, Cellular differentiation, Amyotrophic lateral sclerosis, Embryonic stem cell, Acetylcholine, Atrophy, Neuromuscular junction, Motor neuron


Basic understanding of motor control and its processes is a topic of well-known high relevance. During adolescence walking is theoretically a well-achieved fundamental skill, having reached a mature manifestation; on the other hand, adolescence is marked by a period of accelerated increases in both height and weight, referred as growth spurt. Thus, this period was chosen as a controlled and natural environment for partially isolating one of the factors influencing motor development (segment growth). The aim of the study was to compare gait performance of growing and not growing male adolescents during walking in single task (ST) and dual task (DT), in order to study which are the modifications that motor control handles when encountering a sudden change in segment length.

Concepts: Natural environment, Adolescence, Puberty, Control, Motor skill, Motor neuron


Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) is one of the most common pathological findings associated with the clinical FTLD syndromes. However, molecular characterization with genetic sequencing and protein expression techniques are recognizing many new subtypes for FTLDs. FTLDs are diverse and new nomenclature schemes have been proposed based on the molecular defects that are being discovered ( Mackenzie et al., 2010 , Acta Neuropathologica, 119, 1). Adult polyglucosan body disease (APBD) is a very rare disorder associated with systemic neurological signs and symptoms including progressive dementia with executive dysfunction and motor neuron disease. We report the clinical course of an individual with a clinical FTLD and the as yet unreported findings of coexistent APBD with FTLD-U and transactivation response DNA-binding protein-43 (TDP-43)-positive inclusions at autopsy (or more accurately, FTLD-TDP). It is unclear if these distinct findings are coincidental in this individual, or if pathogenic pathways may intersect to promote these coexisting pathologies.

Concepts: Alzheimer's disease, Pathology, Anatomical pathology, Symptom, Dementia, Frontotemporal dementia, Motor neuron, Frontotemporal lobar degeneration