SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mosquito

486

Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

Concepts: DNA, Gene, Genetics, Allele, Malaria, Plasmodium, Anopheles, Mosquito

389

Female mosquitoes display preferences for certain individuals over others, which is determined by differences in volatile chemicals produced by the human body and detected by mosquitoes. Body odour can be controlled genetically but the existence of a genetic basis for differential attraction to insects has never been formally demonstrated. This study investigated heritability of attractiveness to mosquitoes by evaluating the response of Aedes aegypti (=Stegomyia aegypti) mosquitoes to odours from the hands of identical and non-identical twins in a dual-choice assay. Volatiles from individuals in an identical twin pair showed a high correlation in attractiveness to mosquitoes, while non-identical twin pairs showed a significantly lower correlation. Overall, there was a strong narrow-sense heritability of 0.62 (SE 0.124) for relative attraction and 0.67 (0.354) for flight activity based on the average of ten measurements. The results demonstrate an underlying genetic component detectable by mosquitoes through olfaction. Understanding the genetic basis for attractiveness could create a more informed approach to repellent development.

Concepts: Genetics, Mosquito, Human body, Twin, Aedes aegypti, Aedes, Odor, Body odor

357

In early 2015, an outbreak of Zika virus, a flavivirus transmitted by Aedes mosquitoes, was identified in northeast Brazil, an area where dengue virus was also circulating. By September, reports of an increase in the number of infants born with microcephaly in Zika virus-affected areas began to emerge, and Zika virus RNA was identified in the amniotic fluid of two women whose fetuses had been found to have microcephaly by prenatal ultrasound. The Brazil Ministry of Health (MoH) established a task force to investigate the possible association of microcephaly with Zika virus infection during pregnancy and a registry for incident microcephaly cases (head circumference ≥2 standard deviations [SD] below the mean for sex and gestational age at birth) and pregnancy outcomes among women suspected to have had Zika virus infection during pregnancy. Among a cohort of 35 infants with microcephaly born during August-October 2015 in eight of Brazil’s 26 states and reported to the registry, the mothers of all 35 had lived in or visited Zika virus-affected areas during pregnancy, 25 (71%) infants had severe microcephaly (head circumference >3 SD below the mean for sex and gestational age), 17 (49%) had at least one neurologic abnormality, and among 27 infants who had neuroimaging studies, all had abnormalities. Tests for other congenital infections were negative. All infants had a lumbar puncture as part of the evaluation and cerebrospinal fluid (CSF) samples were sent to a reference laboratory in Brazil for Zika virus testing; results are not yet available. Further studies are needed to confirm the association of microcephaly with Zika virus infection during pregnancy and to understand any other adverse pregnancy outcomes associated with Zika virus infection. Pregnant women in Zika virus-affected areas should protect themselves from mosquito bites by using air conditioning, screens, or nets when indoors, wearing long sleeves and pants, using permethrin-treated clothing and gear, and using insect repellents when outdoors. Pregnant and lactating women can use all U.S. Environmental Protection Agency (EPA)-registered insect repellents according to the product label.

Concepts: Pregnancy, Childbirth, Embryo, Fetus, Mosquito, Obstetrics, Dengue fever, Gestational age

333

There is much evidence that some pathogens manipulate the behaviour of their mosquito hosts to enhance pathogen transmission. However, it is unknown whether this phenomenon exists in the interaction of Anopheles gambiae sensu stricto with the malaria parasite, Plasmodium falciparum - one of the most important interactions in the context of humanity, with malaria causing over 200 million human cases and over 770 thousand deaths each year. Here we demonstrate, for the first time, that infection with P. falciparum causes alterations in behavioural responses to host-derived olfactory stimuli in host-seeking female An. gambiae s.s. mosquitoes. In behavioural experiments we showed that P. falciparum-infected An. gambiae mosquitoes were significantly more attracted to human odors than uninfected mosquitoes. Both P. falciparum-infected and uninfected mosquitoes landed significantly more on a substrate emanating human skin odor compared to a clean substrate. However, significantly more infected mosquitoes landed and probed on a substrate emanating human skin odor than uninfected mosquitoes. This is the first demonstration of a change of An. gambiae behaviour in response to olfactory stimuli caused by infection with P. falciparum. The results of our study provide vital information that could be used to provide better predictions of how malaria is transmitted from human being to human being by An. gambiae s.s. females. Additionally, it highlights the urgent need to investigate this interaction further to determine the olfactory mechanisms that underlie the differential behavioural responses. In doing so, new attractive compounds could be identified which could be used to develop improved mosquito traps for surveillance or trapping programmes that may even specifically target P. falciparum-infected An. gambiae s.s. females.

Concepts: Immune system, Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Mosquito

299

Zika virus is a flavivirus transmitted primarily by Aedes species mosquitoes, and symptoms of infection can include rash, fever, arthralgia, and conjunctivitis (1).* Zika virus infection during pregnancy is a cause of microcephaly and other severe brain defects (2). Infection has also been associated with Guillain-Barré syndrome (3). In December 2015, Puerto Rico became the first U.S. jurisdiction to report local transmission of Zika virus, with the index patient reporting symptom onset on November 23, 2015 (4). This report provides an update to the epidemiology of and public health response to ongoing Zika virus transmission in Puerto Rico. During November 1, 2015-April 14, 2016, a total of 6,157 specimens from suspected Zika virus-infected patients were evaluated by the Puerto Rico Department of Health (PRDH) and CDC Dengue Branch (which is located in San Juan, Puerto Rico), and 683 (11%) had laboratory evidence of current or recent Zika virus infection by one or more tests: reverse transcription-polymerase chain reaction (RT-PCR) or immunoglobulin M (IgM) enzyme-linked immunosorbent assay (ELISA). Zika virus-infected patients resided in 50 (64%) of 78 municipalities in Puerto Rico. Median age was 34 years (range = 35 days-89 years). The most frequently reported signs and symptoms were rash (74%), myalgia (68%), headache (63%), fever (63%), and arthralgia (63%). There were 65 (10%) symptomatic pregnant women who tested positive by RT-PCR or IgM ELISA. A total of 17 (2%) patients required hospitalization, including 5 (1%) patients with suspected Guillain-Barré syndrome. One (<1%) patient died after developing severe thrombocytopenia. The public health response to the outbreak has included increased laboratory capacity to test for Zika virus infection (including blood donor screening), implementation of enhanced surveillance systems, and prevention activities focused on pregnant women. Vector control activities include indoor and outdoor residual spraying and reduction of mosquito breeding environments focused around pregnant women's homes. Residents of and travelers to Puerto Rico should continue to employ mosquito bite avoidance behaviors, take precautions to reduce the risk for sexual transmission (5), and seek medical care for any acute illness with rash or fever.

Concepts: Antibody, Epidemiology, Mosquito, ELISA, ELISPOT, Aedes, Dengue fever, Eva Engvall

290

Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection.

Concepts: Immune system, Inflammation, Infection, Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever

265

Anopheles arabiensis is a dominant vector of malaria in sub-Saharan Africa, which feeds indoors and outdoors on human and other vertebrate hosts, making it a difficult species to control with existing control methods. Novel methods that reduce human-vector interactions are, therefore, required to improve the impact of vector control programmes. Investigating the mechanisms underlying the host discrimination process in An. arabiensis could provide valuable knowledge leading to the development of novel control technologies. In this study, a host census and blood meal analysis were conducted to determine the host selection behaviour of An. arabiensis. Since mosquitoes select and discriminate among hosts primarily using olfaction, the volatile headspace of the preferred non-human host and non-host species, were collected. Using combined gas chromatography and electroantennographic detection analysis followed by combined gas chromatography and mass spectrometry, the bioactive compounds in the headspace collections were identified. The efficiency of the identified non-host compounds to repel host-seeking malaria mosquitoes was tested under field conditions.

Concepts: Human, Malaria, Africa, Sub-Saharan Africa, Anopheles, Mosquito, Vector, Mosquito control

260

Previous experimental studies have demonstrated that a number of mosquito-borne flavivirus pathogens are vertically transmitted in their insect vectors, providing a mechanism for these arboviruses to persist during adverse climatic conditions or in the absence of a susceptible vertebrate host. In this study, designed to test whether Zika virus (ZIKV) could be vertically transmitted, female Aedes aegypti and Aedes albopictus were injected with ZIKV, and their F1 adult progeny were tested for ZIKV infection. Of 69 Ae. aegypti pools, six consisted of a total of 1,738 F1 adults, yielded ZIKV upon culture, giving a minimum filial infection rate of 1:290. In contrast, none of 803 F1 Ae. albopictus adults (32 pools) yielded ZIKV. The MFIR for Ae. aegypti was comparable to MFIRs reported for other flaviviruses in mosquitoes, including dengue, Japanese encephalitis, yellow fever, West Nile, and St. Louis encephalitis viruses. The results suggest that vertical transmission may provide a potential mechanism for the virus to survive during adverse conditions.

Concepts: Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever, Encephalitis, Flaviviridae, Flaviviruses

252

Zika virus, a mosquito-borne flavivirus, spread to the Region of the Americas (Americas) in mid-2015, and appears to be related to congenital microcephaly and Guillain-Barré syndrome (1,2). On February 1, 2016, the World Health Organization (WHO) declared the occurrence of microcephaly cases in association with Zika virus infection to be a Public Health Emergency of International Concern.* On December 31, 2015, Puerto Rico Department of Health (PRDH) reported the first locally acquired (index) case of Zika virus disease in a jurisdiction of the United States in a patient from southeastern Puerto Rico. During November 23, 2015-January 28, 2016, passive and enhanced surveillance for Zika virus disease identified 30 laboratory-confirmed cases. Most (93%) patients resided in eastern Puerto Rico or the San Juan metropolitan area. The most frequently reported signs and symptoms were rash (77%), myalgia (77%), arthralgia (73%), and fever (73%). Three (10%) patients were hospitalized. One case occurred in a patient hospitalized for Guillain-Barré syndrome, and one occurred in a pregnant woman. Because the most common mosquito vector of Zika virus, Aedes aegypti, is present throughout Puerto Rico, Zika virus is expected to continue to spread across the island. The public health response in Puerto Rico is being coordinated by PRDH with assistance from CDC. Clinicians in Puerto Rico should report all cases of microcephaly, Guillain-Barré syndrome, and suspected Zika virus disease to PRDH. Other adverse reproductive outcomes, including fetal demise associated with Zika virus infection, should be reported to PRDH. To avoid infection with Zika virus, residents of and visitors to Puerto Rico, particularly pregnant women, should strictly follow steps to avoid mosquito bites, including wearing pants and long-sleeved shirts, using permethrin-treated clothing and gear, using an Environmental Protection Agency (EPA)-registered insect repellent, and ensuring that windows and doors have intact screens.

Concepts: Pregnancy, United States, Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever, World Health Organization

249

Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for “natural” DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject’s hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases.

Concepts: Effectiveness, Mosquito, Aedes aegypti, Aedes, Dengue fever, Insect repellent, Asian tiger mosquito, DEET