SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Morphine

189

Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog “alert” is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

Concepts: Insect, Drug, European honey bee, Honey bee, Morphine, Drug addiction, Heroin, Illegal drug trade

170

BACKGROUND: Pre-eclampsia/eclampsia is one of the most common causes of maternal and perinatal morbidity and mortality in low and middle income countries. Magnesium sulfate is the drug of choice for prevention of seizures as part of comprehensive management of the disease. Despite the compelling evidence for the effectiveness of magnesium sulfate, concern has been expressed about its safety and potential for toxicity, particularly among providers in low- and middle-income countries. The purpose of this review was to determine whether the literature published in these global settings supports the concerns about the safety of use of magnesium sulfate. METHODS: An integrative review of the literature was conducted to document the known incidences of severe adverse reactions to magnesium sulphate, and specific outcomes of interest related to its use. All types of prospective clinical studies were included if magnesium sulfate was used to manage pre-eclampsia or eclampsia, the study was conducted in a low- or middle-income country, and the study included the recording of the incidence of any adverse side effect resulting from magnesium sulfate use. RESULTS: A total of 24 studies that compared a magnesium sulfate regimen against other drug regimens and examined side effects among 34 subject groups were included. The overall rate of absent patellar reflex among all 9556 aggregated women was 1.6%, with a range of 0-57%. The overall rate of respiratory depression in 25 subject groups in which this outcome was reported was 1.3%, with a range of 0–8.2%. Delay in repeat administration of magnesium sulfate occurred in 3.6% of cases, with a range of 0-65%. Calcium gluconate was administered at an overall rate of less than 0.2%. There was only one maternal death that was attributed by the study authors to the use of magnesium sulfate among the 9556 women in the 24 studies. CONCLUSION: Concerns about safety and toxicity from the use of magnesium sulfate should be mitigated by findings from this integrative review, which indicates a low incidence of the most severe side effects, documented in studies that used a wide variety of standard and modified drug regimens. Adverse effects of concern to providers occur infrequently, and when they occurred, a delay of repeat administration was generally sufficient to mitigate the effect. Early screening and diagnosis of the disease, appropriate treatment with proven drugs, and reasonable vigilance for women under treatment should be adopted as global policy and practice.

Concepts: Pharmacology, Effectiveness, Magnesium sulfate, Sulfur, Morphine, Adverse effect, Salt, Iatrogenesis

170

To aid public health policymaking, we studied the cost-effectiveness of buprenorphine, naltrexone, and placebo interventions for heroin dependence in Malaysia.

Concepts: Health economics, Morphine, Heroin, Naloxone, Drug rehabilitation

169

This issue of Molecular Pharmacology is dedicated to Dr. Avram Goldstein, the journal’s founding Editor and one of the leaders in the development of modern pharmacology. This chapter focuses on his contributions to the discovery of the dynorphins and evidence that members of this family of opioid peptides are endogenous agonists for the kappa opioid receptor. In his original publication describing the purification and sequencing of dynorphin A, Avram described this peptide as ‘extraordinarily potent’ (‘dyn’ from the Greek, dynamis = power and ‘-orphin’ for endogenous morphine peptide). The name originally referred to its high affinity and great potency in the bioassay that was used to follow its activity during purification, but the name has come to have a second meaning: Studies of its physiological function in brain continue to provide powerful insights to the molecular mechanisms controlling the mood disorders and drug addiction. In the 30 years since its discovery, we have learned that the dynorphin peptides are released in brain during stress exposure. Once released, they activate kappa opioid receptors distributed throughout the brain and spinal cord where they trigger cellular responses resulting in different stress responses: analgesia, dysphoria-like behaviors, anxiety-like responses, and increased addiction behaviors in experimental animals. Avram predicted that a detailed molecular analysis of opiate drug actions would someday lead to better treatments for drug addiction, and he would be gratified to know that subsequent studies enabled by his discovery of the dynorphins resulted in insights that hold great promise for new treatments for addiction and depressive disorders.

Concepts: Opioid, Morphine, Opioid receptor, Heroin, Buprenorphine, Endorphin, Codeine, Kappa Opioid receptor

168

Opioids are respiratory depressants and heroin/opioid overdose is a major contributor to the excess mortality of heroin addicts. The individual and situational variability of respiratory depression caused by intravenous heroin is poorly understood. This study used advanced respiratory monitoring to follow the time course and severity of acute opioid-induced respiratory depression. 10 patients (9/10 with chronic airflow obstruction) undergoing supervised injectable opioid treatment for heroin addiction received their usual prescribed dose of injectable opioid (diamorphine or methadone) (IOT), and their usual prescribed dose of oral opioid (methadone or sustained release oral morphine) after 30 minutes. The main outcome measures were pulse oximetry (SpO2%), end-tidal CO2% (ETCO2%) and neural respiratory drive (NRD) (quantified using parasternal intercostal muscle electromyography). Significant respiratory depression was defined as absence of inspiratory airflow >10s, SpO2% < 90% for >10s and ETCO2% per breath >6.5%. Increases in ETCO2% indicated significant respiratory depression following IOT in 8/10 patients at 30 minutes. In contrast, SpO2% indicated significant respiratory depression in only 4/10 patients, with small absolute changes in SpO2% at 30 minutes. A decline in NRD from baseline to 30 minutes post IOT was also observed, but was not statistically significant. Baseline NRD and opioid-induced drop in SpO2% were inversely related. We conclude that significant acute respiratory depression is commonly induced by opioid drugs prescribed to treat opioid addiction. Hypoventilation is reliably detected by capnography, but not by SpO2% alone. Chronic suppression of NRD in the presence of underlying lung disease may be a risk factor for acute opioid-induced respiratory depression.

Concepts: Opioid, Morphine, Drug addiction, Heroin, Naloxone, Hydromorphone, Depressant, Hypoventilation

167

It is well-known that genotypic differences can account for the subject-specific responses to opiate administration. In this regard, the basal activity of the endogenous system (either at the receptor or at the ligand level) can modulate the effects of exogenous agonists as morphine, and vice versa. The μ opioid receptor from zebrafish, dre-oprm1, binds endogenous peptides and morphine with similar affinities. Morphine administration during development altered the expression of the endogenous opioid propeptides proenkephalins and proopiomelanocortin. Treatment with opioid peptides (Met-ENK, MEGY and β-END) modulated dre-oprm1 expression during development. Knocking-down dre-oprm1 gene significantly modified the mRNA expression of the penk and pomc genes, thus indicating that oprm1 is involved in shaping penk and pomc expression. Besides, the absence of a functional oprm1 clearly disrupted the embryonic development, as proliferation was disorganized in the central nervous system of oprm1-morphant embryos: mitotic cells were found widespread through the optic tectum, and not restricted to the proliferative areas of the mid- and hindbrain. TUNEL staining revealed that the number of apoptotic cells in the Central Nervous System (CNS) of morphants was clearly increased at 24 hpf. These findings will help to understand the role of the endogenous opioid system in the CNS development. Our results will also contribute to unravel the complex feedback loops which modulate opioid activity, and which may be involved in establishing a coordinated expression of both receptors and endogenous ligands. Further knowledge of the complex interactions between the opioid system and analgesic drugs will provide insights that may be relevant for analgesic therapy.

Concepts: Central nervous system, Opioid, Morphine, Opioid receptor, Buprenorphine, Hydrocodone, Codeine, Oxycodone

167

CO(2)-laser C-fibre evoked cortical potentials (LCEPs) is a potentially useful animal model for studies of pain mechanisms. A potential confounding factor when assessing analgesic effects of systemically administered drugs using LCEP is sedation. This study aims to clarify: 1) the relation between level of anaesthesia and magnitude of LCEP, 2) the effects of a sedative and an analgesic on LCEP and dominant EEG frequency 3) the effects of a sedative and analgesic on LCEP when dominant EEG frequency is kept stable. LCEP and EEG were recorded in isoflurane/nitrous-oxide anaesthetized rats. Increasing isoflurane level gradually reduced LCEPs and lowered dominant EEG frequencies. Systemic midazolam (10 μmol/kg) profoundly reduced LCEP (19% of control) and lowered dominant EEG frequency. Similarly, morphine 1 and 3 mg/kg reduced LCEP (39%, 12% of control, respectively) and decreased EEG frequency. When keeping the dominant EEG frequency stable, midazolam caused no significant change of LCEP. Under these premises, morphine at 3 mg/kg, but not 1 mg/kg, caused a significant LCEP reduction (26% of control). In conclusion, the present data indicate that the sedative effects should be accounted for when assessing the analgesic effects of drug. Furthermore, it is suggested that LCEP, given that changes in EEG induced by sedation are compensated for, can provide information about the analgesic properties of systemically administrated drugs.

Concepts: Opioid, Pain, Somatosensory system, Nociception, Morphine, Analgesic, Codeine, Sedative

166

Prescription opioid use is highly associated with risk of opioid-related death, with 1 of every 550 chronic opioid users dying within approximately 2.5 years of their first opioid prescription. Although gabapentin is widely perceived as safe, drug-induced respiratory depression has been described when gabapentin is used alone or in combination with other medications. Because gabapentin and opioids are both commonly prescribed for pain, the likelihood of co-prescription is high. However, no published studies have examined whether concomitant gabapentin therapy is associated with an increased risk of accidental opioid-related death in patients receiving opioids. The objective of this study was to investigate whether co-prescription of opioids and gabapentin is associated with an increased risk of accidental opioid-related mortality.

Concepts: Experimental design, Epidemiology, Death, Drug, Opioid, Morphine, Psychoactive drug, Recreational drug use

165

The benzylisoquinoline alkaloid papaverine, synthesized in low amount in most of the opium poppy varieties of Papaver somniferum, is used as a vasodilator muscle relaxant and antispasmodic. Papaverine biosynthesis remains controversial as two different routes utilizing either (S)-coclaurine or (S)-reticuline have been proposed with uncharacterized intermediate steps. In an attempt to elucidate papaverine biosynthesis and identify putative genes involved in uncharacterized steps, we carried out comparative transcriptome analysis of high papaverine mutant (pap1) and normal cultivar (BR086) of P. somniferum. This natural mutant synthesizes more than 12-fold papaverine in comparison to BR086. We established more than 238 Mb transcriptome data separately for pap1 and BR086. Assembly of reads generated 127,342 and 106,128 unigenes in pap1 and BR086, respectively. Digital gene expression analysis of transcriptomes revealed 3,336 differentially expressing unigenes. Enhanced expression of (S)-norcoclaurine-6-O-methyltransferase (6OMT), (S)-3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT), norreticuline 7-O-methyltransferase (N7OMT) and down-regulation of reticuline 7-O-methyltransferase (7OMT) in pap1 in comparison to BR086 suggest (S)-coclaurine as the route for papaverine biosynthesis. We also identified several methyltransferases and dehydrogenases with enhanced expression in pap1 in comparison to BR086. Our analysis using natural mutant, pap1, concludes that (S)-coclaurine is the branch-point intermediate and preferred route for papaverine biosynthesis. Differentially expressing methyltransferases and dehydrogenases identified in this study will help in elucidating complete biosynthetic pathway of papaverine. The information generated will be helpful in developing strategies for enhanced biosynthesis of papaverine through biotechnological approaches.

Concepts: Gene, Gene expression, Morphine, Opium, Opium poppy, Papaver, Papaverine, Poppy seed

164

Benzylisoquinoline alkaloids (BIAs) are a diverse group of biologically active specialized metabolites produced mainly in four plant families. BIA metabolism is likely of monophyletic origin and involves multiple enzymes yielding structurally diverse compounds. Several BIAs possess defensive properties against pathogenic microorganisms and herbivores. Opium poppy (Papaver somniferum: Papaveraceae) has emerged as a model system to investigate the cellular localization of BIA biosynthesis. Although alkaloids accumulate in the laticifer cytoplasm (latex) of opium poppy, corresponding biosynthetic enzymes and gene transcripts are localized to proximal sieve elements and companion cells, respectively. In contrast, BIA metabolism in the non-laticiferous meadow rue (Thalictrum flavum; Ranunculaceae) occurs independent of the phloem. Evidence points toward the adoption of diverse strategies for the biosynthesis and accumulation of alkaloids as defensive compounds. Recruitment of cell types involved in BIA metabolism, both within and external to the phloem, was likely driven by selection pressures unique to different taxa. The biochemistry, cell biology, ecophysiology, and evolution of BIA metabolism are considered in this context.

Concepts: Protein, Cell, Bacteria, Metabolism, Organism, Morphine, Opium, Opium poppy