SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Moon

684

As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth’s protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth’s magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation.

Concepts: Mortality rate, Atherosclerosis, Earth's magnetic field, Earth, Blood vessel, Moon, Endothelium, Human spaceflight

294

Establishing the age of the Moon is critical to understanding solar system evolution and the formation of rocky planets, including Earth. However, despite its importance, the age of the Moon has never been accurately determined. We present uranium-lead dating of Apollo 14 zircon fragments that yield highly precise, concordant ages, demonstrating that they are robust against postcrystallization isotopic disturbances. Hafnium isotopic analyses of the same fragments show extremely low initial (176)Hf/(177)Hf ratios corrected for cosmic ray exposure that are near the solar system initial value. Our data indicate differentiation of the lunar crust by 4.51 billion years, indicating the formation of the Moon within the first ~60 million years after the birth of the solar system.

Concepts: Earth, Sun, Solar System, Moon, Dwarf planet, Venus, Io, Impact crater

167

The link between arousal and pupil dilation is well studied, but it is less known that other cognitive processes can trigger pupil responses. Here we present evidence that pupil responses can be induced by high-level scene processing, independent of changes in low-level features or arousal. In Experiment 1, we recorded changes in pupil diameter of observers while they viewed a variety of natural scenes with or without a sun that were presented either upright or inverted. Image inversion had the strongest effect on the pupil responses. The pupil constricted more to the onset of upright images as compared to inverted images. Furthermore, the amplitudes of pupil constrictions to viewing images containing a sun were larger relative to control images. In Experiment 2, we presented cartoon versions of upright and inverted pictures that included either a sun or a moon. The image backgrounds were kept identical across conditions. Similar to Experiment 1, upright images triggered pupil constrictions with larger amplitudes than inverted images and images of the sun evoked greater pupil contraction than images of the moon. We suggest that the modulations of pupil responses were due to higher-level interpretations of image content.

Concepts: Sun, Moon, Inverse function, Astronomy in medieval Islam

120

In order to verify if the full moon is associated with sleep and activity behaviors, we used a 12-country study providing 33,710 24-h accelerometer recordings of sleep and activity. The present observational, cross-sectional study included 5812 children ages 9-11 years from study sites that represented all inhabited continents and wide ranges of human development (Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, United Kingdom, and United States). Three moon phases were used in this analysis: full moon (±4 days; reference), half moon (±5-9 days), and new moon (±10-14 days) from nearest full moon. Nocturnal sleep duration, moderate-to-vigorous physical activity (MVPA), light-intensity physical activity (LPA), and total sedentary time (SED) were monitored over seven consecutive days using a waist-worn accelerometer worn 24 h a day. Only sleep duration was found to significantly differ between moon phases (~5 min/night shorter during full moon compared to new moon). Differences in MVPA, LPA, and SED between moon phases were negligible and non-significant (<2 min/day difference). There was no difference in the associations between study sites. In conclusion, sleep duration was 1% shorter at full moon compared to new moon, while activity behaviors were not significantly associated with the lunar cycle in this global sample of children. Whether this seemingly minimal difference is clinically meaningful is questionable.

Concepts: Moon, Lunar eclipse, Lunar phase, Month, Full moon, Orbit of the Moon, New moon, Lunar calendar

102

The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto’s tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin’s present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

Concepts: Earth, Sun, Solar System, Mars, Moon, Neptune, Io, Ecliptic

88

This paper demonstrates the significant utility of deploying non-traditional biological techniques to harness available volatiles and waste resources on manned missions to explore the Moon and Mars. Compared with anticipated non-biological approaches, it is determined that for 916 day Martian missions: 205 days of high-quality methane and oxygen Mars bioproduction with Methanobacterium thermoautotrophicum can reduce the mass of a Martian fuel-manufacture plant by 56%; 496 days of biomass generation with Arthrospira platensis and Arthrospira maxima on Mars can decrease the shipped wet-food mixed-menu mass for a Mars stay and a one-way voyage by 38%; 202 days of Mars polyhydroxybutyrate synthesis with Cupriavidus necator can lower the shipped mass to three-dimensional print a 120 m(3) six-person habitat by 85% and a few days of acetaminophen production with engineered Synechocystis sp. PCC 6803 can completely replenish expired or irradiated stocks of the pharmaceutical, thereby providing independence from unmanned resupply spacecraft that take up to 210 days to arrive. Analogous outcomes are included for lunar missions. Because of the benign assumptions involved, the results provide a glimpse of the intriguing potential of ‘space synthetic biology’, and help focus related efforts for immediate, near-term impact.

Concepts: Solar System, Mars, Moon, Spacecraft, Space exploration, Human spaceflight, NASA, Robotic spacecraft

82

Random bombardment by comets, asteroids and associated fragments form and alter the lunar regolith and other rocky surfaces. The accumulation of impact craters over time is of fundamental use in evaluating the relative ages of geologic units. Crater counts and radiometric ages from returned samples provide constraints with which to derive absolute model ages for unsampled units on the Moon and other Solar System objects. However, although studies of existing craters and returned samples offer insight into the process of crater formation and the past cratering rate, questions still remain about the present rate of crater production, the effect of early-stage jetting during impacts and the influence that distal ejecta have on the regolith. Here we use Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) temporal (‘before and after’) image pairs to quantify the contemporary rate of crater production on the Moon, to reveal previously unknown details of impact-induced jetting, and to identify a secondary impact process that is rapidly churning the regolith. From this temporal dataset, we detected 222 new impact craters and found 33 per cent more craters (with diameters of at least ten metres) than predicted by the standard Neukum production and chronology functions for the Moon. We identified broad reflectance zones associated with the new craters that we interpret as evidence of a surface-bound jetting process. We also observe a secondary cratering process that we estimate churns the top two centimetres of regolith on a timescale of 81,000 years-more than a hundred times faster than previous models estimated from meteoritic impacts (ten million years).

Concepts: Solar System, Mars, Moon, Regolith, Impact crater, Apollo 11, Comet, Lunar Reconnaissance Orbiter

82

Endogenous rhythms of circalunar periodicity (∼29.5 days) and their underlying molecular and genetic basis have been demonstrated in a number of marine species [1, 2]. In contrast, there is a great deal of folklore but no consistent association of moon cycles with human physiology and behavior [3]. Here we show that subjective and objective measures of sleep vary according to lunar phase and thus may reflect circalunar rhythmicity in humans. To exclude confounders such as increased light at night or the potential bias in perception regarding a lunar influence on sleep, we retrospectively analyzed sleep structure, electroencephalographic activity during non-rapid-eye-movement (NREM) sleep, and secretion of the hormones melatonin and cortisol found under stringently controlled laboratory conditions in a cross-sectional setting. At no point during and after the study were volunteers or investigators aware of the a posteriori analysis relative to lunar phase. We found that around full moon, electroencephalogram (EEG) delta activity during NREM sleep, an indicator of deep sleep, decreased by 30%, time to fall asleep increased by 5 min, and EEG-assessed total sleep duration was reduced by 20 min. These changes were associated with a decrease in subjective sleep quality and diminished endogenous melatonin levels. This is the first reliable evidence that a lunar rhythm can modulate sleep structure in humans when measured under the highly controlled conditions of a circadian laboratory study protocol without time cues.

Concepts: Sleep, Moon, Electroencephalography, Lunar phase, Delta wave, Non-rapid eye movement sleep, Month, Full moon

81

In extreme high-latitude marine environments that are without solar illumination in winter, light-mediated patterns of biological migration have historically been considered non-existent [1]. However, diel vertical migration (DVM) of zooplankton has been shown to occur even during the darkest part of the polar night, when illumination levels are exceptionally low [2, 3]. This paradox is, as yet, unexplained. Here, we present evidence of an unexpected uniform behavior across the entire Arctic, in fjord, shelf, slope and open sea, where vertical migrations of zooplankton are driven by lunar illumination. A shift from solar-day (24-hr period) to lunar-day (24.8-hr period) vertical migration takes place in winter when the moon rises above the horizon. Further, mass sinking of zooplankton from the surface waters and accumulation at a depth of ∼50 m occurs every 29.5 days in winter, coincident with the periods of full moon. Moonlight may enable predation of zooplankton by carnivorous zooplankters, fish, and birds now known to feed during the polar night [4]. Although primary production is almost nil at this time, lunar vertical migration (LVM) may facilitate monthly pulses of carbon remineralization, as they occur continuously in illuminated mesopelagic systems [5], due to community respiration of carnivorous and detritivorous zooplankton. The extent of LVM during the winter suggests that the behavior is highly conserved and adaptive and therefore needs to be considered as “baseline” zooplankton activity in a changing Arctic ocean [6-9]. VIDEO ABSTRACT.

Concepts: Moon, Arctic Ocean, Marine biology, Zooplankton, Plankton, Arctic Circle, Svalbard, Diel vertical migration

72

When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds [1, 2], seals [3], and humans [4] are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile [5-9]. Even on clear moonless nights, many beetles still manage to orientate along straight paths [5]. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates [10], spiders [11], and insects [5, 12], but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom.

Concepts: Insect, Sun, Moon, Beetle, Milky Way, Dung beetle, Astronomical unit, Astronomy in medieval Islam