Discover the most talked about and latest scientific content & concepts.

Concept: Montana


Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone - discrepancy between expected and realized mortality levels - led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

Concepts: Hunting, British Columbia, Bear, Montana, Yellowstone National Park, Bears, Grizzly Bear, Banff National Park


The propensity for a grizzly bear to develop conflict behaviours might be a result of social learning between mothers and cubs, genetic inheritance, or both learning and inheritance. Using non-invasive genetic sampling, we collected grizzly bear hair samples during 2011-2014 across southwestern Alberta, Canada. We targeted private agricultural lands for hair samples at grizzly bear incident sites, defining an incident as an occurrence in which the grizzly bear caused property damage, obtained anthropogenic food, or killed or attempted to kill livestock or pets. We genotyped 213 unique grizzly bears (118 M, 95 F) at 24 microsatellite loci, plus the amelogenin marker for sex. We used the program COLONY to assign parentage. We evaluated 76 mother-offspring relationships and 119 father-offspring relationships. We compared the frequency of problem and non-problem offspring from problem and non-problem parents, excluding dependent offspring from our analysis. Our results support the social learning hypothesis, but not the genetic inheritance hypothesis. Offspring of problem mothers are more likely to be involved in conflict behaviours, while offspring from non-problem mothers are not likely to be involved in incidents or human-bear conflicts themselves (Barnard’s test, p = 0.05, 62.5% of offspring from problem mothers were problem bears). There was no evidence that offspring are more likely to be involved in conflict behaviour if their fathers had been problem bears (Barnard’s test, p = 0.92, 29.6% of offspring from problem fathers were problem bears). For the mother-offspring relationships evaluated, 30.3% of offspring were identified as problem bears independent of their mother’s conflict status. Similarly, 28.6% of offspring were identified as problem bears independent of their father’s conflict status. Proactive mitigation to prevent female bears from becoming problem individuals likely will help prevent the perpetuation of conflicts through social learning.

Concepts: Psychology, Genetics, Parent, Mother, Montana, Bears, Nature versus nurture, Grizzly Bear


Dakotaraptor steini is a recently described dromaeosaurid dinosaur from the Upper Cretaceous (Maastrichtian) Hell Creek Formation of South Dakota. Included within the D. steini hypodigm are three elements originally identified as furculae, one of which was made part of the holotype specimen. We show that the elements described as D. steini ‘furculae’ are not theropod dinosaur furculae, but are rather trionychid turtle entoplastra referable to cf. Axestemys splendida. The hypodigm of D. steini should be adjusted accordingly.

Concepts: Reptile, Dinosaur, Theropoda, Montana, Dromaeosauridae, Maastrichtian, Tyrannosaurus, Late Cretaceous


Brachylophosaurini is a clade of hadrosaurine dinosaurs currently known from the Campanian (Late Cretaceous) of North America. Its members include: Acristavus gagslarsoni, which lacks a nasal crest; Brachylophosaurus canadensis, which possesses a flat paddle-shaped nasal crest projecting posteriorly over the dorsal skull roof; and Maiasaura peeblesorum, which possesses a dorsally-projecting nasofrontal crest. Acristavus, from the lower Two Medicine Formation of Montana (~81-80 Ma), is hypothesized to be the ancestral member of the clade. Brachylophosaurus specimens are from the middle Oldman Formation of Alberta and equivalent beds in the Judith River Formation of Montana; the upper Oldman Formation is dated 77.8 Ma.

Concepts: Cretaceous, Dinosaur, Montana, Hadrosaurid, Maiasaura, Prosaurolophus, Judith River Formation, Brachylophosaurus


Soft fibrillar bone tissues were obtained from a supraorbital horn of Triceratops horridus collected at the Hell Creek Formation in Montana, USA. Soft material was present in pre and post-decalcified bone. Horn material yielded numerous small sheets of lamellar bone matrix. This matrix possessed visible microstructures consistent with lamellar bone osteocytes. Some sheets of soft tissue had multiple layers of intact tissues with osteocyte-like structures featuring filipodial-like interconnections and secondary branching. Both oblate and stellate types of osteocyte-like cells were present in sheets of soft tissues and exhibited organelle-like microstructures. SEM analysis yielded osteocyte-like cells featuring filipodial extensions of 18-20μm in length. Filipodial extensions were delicate and showed no evidence of any permineralization or crystallization artifact and therefore were interpreted to be soft. This is the first report of sheets of soft tissues from Triceratops horn bearing layers of osteocytes, and extends the range and type of dinosaur specimens known to contain non-fossilized material in bone matrix.

Concepts: Bone, Tissues, Soft tissue, Fossil, Dinosaur, Montana, Triceratops, Hell Creek Formation


Practice-based research networks bring together academic researchers and primary care clinicians to conduct research that improves health outcomes in real-world settings. The Washington, Wyoming, Alaska, Montana, and Idaho region Practice and Research Network implemented a health data-sharing infrastructure across 9 clinics in 3 primary care organizations. Following implementation, we identified challenges and solutions. Challenges included working with diverse primary care organizations, adoption of health information data-sharing technology in a rapidly changing local and national landscape, and limited resources for implementation. Overarching solutions included working with a multidisciplinary academic implementation team, maintaining flexibility, and starting with an established network for primary care organizations. Approaches outlined may generalize to similar initiatives and facilitate adoption of health data sharing in other practice-based research networks.

Concepts: Health care, Scientific method, Research, Alaska, Implementation, Clinic, Montana, Wyoming


Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change.

Concepts: Ecosystem, Bear, Montana, Yellowstone National Park, Brown Bear, Bears, Greater Yellowstone Ecosystem, Grizzly Bear


The Belly River Group of southern Alberta is one of the best-sampled Late Cretaceous terrestrial faunal assemblages in the world. This system provides a high-resolution biostratigraphic record of terrestrial vertebrate diversity and faunal turnover, and it has considerable potential to be a model system for testing hypotheses of dinosaur palaeoecological dynamics, including important aspects of palaeoecommunity structure, trophic interactions, and responses to environmental change. Vertebrate fossil microsites (assemblages of small bones and teeth concentrated together over a relatively short time and thought to be representative of community composition) offer an unparalleled dataset to better test these hypotheses by ameliorating problems of sample size, geography, and chronostratigraphic control that hamper other palaeoecological analyses. Here, we assembled a comprehensive relative abundance dataset of microsites sampled from the entire Belly River Group and performed a series of analyses to test the influence of environmental factors on site and taxon clustering, and assess the stability of faunal assemblages both temporally and spatially. We also test the long-held idea that populations of large dinosaur taxa were particularly sensitive to small-scale environmental gradients, such as the paralic (coastal) to alluvial (inland) regimes present within the time-equivalent depositional basin of the upper Oldman and lower Dinosaur Park Formations.

Concepts: Sample size, Ecology, Cretaceous, Null hypothesis, Fossil, Statistical power, Dinosaur, Montana


A new taxon of chasmosaurine ceratopsid demonstrates unexpected disparity in parietosquamosal frill shape among ceratopsid dinosaurs early in their evolutionary radiation. The new taxon is described based on two apomorphic squamosals collected from approximately time equivalent (approximately 77 million years old) sections of the upper Judith River Formation, Montana, and the lower Dinosaur Park Formation of Dinosaur Provincial Park, Alberta. It is referred to Chasmosaurinae based on the inferred elongate morphology. The typical chasmosaurine squamosal forms an obtuse triangle in dorsal view that tapers towards the posterolateral corner of the frill. In the dorsal view of the new taxon, the lateral margin of the squamosal is hatchet-shaped with the posterior portion modified into a constricted narrow bar that would have supported the lateral margin of a robust parietal. The new taxon represents the oldest chasmosaurine from Canada, and the first pre-Maastrichtian ceratopsid to have been collected on both sides of the Canada-US border, with a minimum north-south range of 380 km. This squamosal morphology would have given the frill of the new taxon a unique dorsal profile that represents evolutionary experimentation in frill signalling near the origin of chasmosaurine ceratopsids and reinforces biogeographic differences between northern and southern faunal provinces in the Campanian of North America.

Concepts: Paleontology, Dinosaur, Montana, Triceratops, Ceratopsia, Styracosaurus, Centrosaurus, Judith River Group


Interbasinal stratigraphic correlation provides the foundation for all consequent continental-scale geological and paleontological analyses. Correlation requires synthesis of lithostratigraphic, biostratigraphic and geochronologic data, and must be periodically updated to accord with advances in dating techniques, changing standards for radiometric dates, new stratigraphic concepts, hypotheses, fossil specimens, and field data. Outdated or incorrect correlation exposes geological and paleontological analyses to potential error. The current work presents a high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America, combining published chronostratigraphic, lithostratigraphic, and biostratigraphic data. 40Ar / 39Ar radiometric dates are newly recalibrated to both current standard and decay constant pairings. Revisions to the stratigraphic placement of most units are slight, but important changes are made to the proposed correlations of the Aguja and Javelina formations, Texas, and recalibration corrections in particular affect the relative age positions of the Belly River Group, Alberta; Judith River Formation, Montana; Kaiparowits Formation, Utah; and Fruitland and Kirtland formations, New Mexico. The stratigraphic ranges of selected clades of dinosaur species are plotted on the chronostratigraphic framework, with some clades comprising short-duration species that do not overlap stratigraphically with preceding or succeeding forms. This is the expected pattern that is produced by an anagenetic mode of evolution, suggesting that true branching (speciation) events were rare and may have geographic significance. The recent hypothesis of intracontinental latitudinal provinciality of dinosaurs is shown to be affected by previous stratigraphic miscorrelation. Rapid stepwise acquisition of display characters in many dinosaur clades, in particular chasmosaurine ceratopsids, suggests that they may be useful for high resolution biostratigraphy.

Concepts: Fossil, Paleontology, Dinosaur, Montana, Biostratigraphy, Stratigraphy, Chronostratigraphy, Lithostratigraphy