SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Monsanto

159

Multiple lines of transgenic rice expressing insecticidal genes from the bacterium Bacillus thuringiensis (Bt) have been developed in China, posing the prospect of increases in production with decreased application of pesticides. We explore the issues facing adoption of Bt rice for commercial production in China. A body of safety assessment work on Bt rice has shown that Bt rice poses a negligible risk to the environment and that Bt rice products are as safe as non-Bt control rice products as food. China has a relatively well-developed regulatory system for risk assessment and management of genetically modified (GM) plants; however, decision-making regarding approval of commercial production has become politicized, and two Bt rice lines that otherwise were ready have not been allowed to enter the Chinese agricultural system. We predict that Chinese farmers would value the prospect of increased yield with decreased use of pesticide and would readily adopt production of Bt rice. That Bt rice lines may not be commercialized in the near future we attribute to social pressures, largely due to the low level of understanding and acceptance of GM crops by Chinese consumers. Hence, enhancing communication of GM crop science-related issues to the public is an important, unmet need. While the dynamics of each issue are particular to China, they typify those in many countries where adoption of GM crops has been not been rapid; hence, the assessment of these dynamics might inform resolution of these issues in other countries.

Concepts: Bacteria, Risk, Pesticide, Bacillus thuringiensis, Genetically modified organism, Genetically modified food, Genetic engineering, Monsanto

46

Despite widespread adoption of genetically modified crops in many countries, heated controversies about their advantages and disadvantages continue. Especially for developing countries, there are concerns that genetically modified crops fail to benefit smallholder farmers and contribute to social and economic hardship. Many economic studies contradict this view, but most of them look at short-term impacts only, so that uncertainty about longer-term effects prevails. We address this shortcoming by analyzing economic impacts and impact dynamics of Bt cotton in India. Building on unique panel data collected between 2002 and 2008, and controlling for nonrandom selection bias in technology adoption, we show that Bt has caused a 24% increase in cotton yield per acre through reduced pest damage and a 50% gain in cotton profit among smallholders. These benefits are stable; there are even indications that they have increased over time. We further show that Bt cotton adoption has raised consumption expenditures, a common measure of household living standard, by 18% during the 2006-2008 period. We conclude that Bt cotton has created large and sustainable benefits, which contribute to positive economic and social development in India.

Concepts: Economics, Bacillus, Developing country, Bacillus thuringiensis, Genetically modified food, Transgenic maize, Monsanto, Pink bollworm

38

Our recent work (Séralini et al., 2012) remains to date the most detailed study involving the life-long consumption of an agricultural genetically modified organism (GMO). This is true especially for NK603 maize for which only a 90-day test for commercial release was previously conducted using the same rat strain (Hammond et al., 2004). It is also the first long term detailed research on mammals exposed to a highly diluted pesticide in its total formulation with adjuvants. This may explain why 75% of our first criticisms arising within a week, among publishing authors, come from plant biologists, some developing patents on GMOs, even if it was a toxicological paper on mammals, and from Monsanto Company who owns both the NK603 GM maize and Roundup herbicide ®. Our study has limits like any one, and here we carefully answer to all criticisms from agencies, consultants and scientists, that were sent to the Editor or to ourselves. At this level, a full debate is biased if the toxicity tests on mammals of NK603 and R obtained by Monsanto Company remain confidential and thus unavailable in an electronic format for the whole scientific community to conduct independent scrutiny of the raw data. In our article, the conclusions of long-term NK603 and Roundup toxicities came from the statistically highly discriminant findings at the biochemical level in treated groups in comparison to controls, because these findings do correspond in an blinded analysis to the pathologies observed in organs, that were in turn linked to the deaths by anatomopathologists. GM NK603 and R cannot be regarded as safe to date.

Concepts: Scientific method, Molecular biology, Genetically modified organism, Genetically modified food, Ice-minus bacteria, Glyphosate, Roundup, Monsanto

31

To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the “pyramid” strategy uses plants that produce two or more toxins that kill the same pest. In the United States, this strategy has been adopted widely, with two-toxin Bt cotton replacing one-toxin Bt cotton. Although two-toxin plants are likely to be more durable than one-toxin plants, the extent of this advantage depends on several conditions. One key assumption favoring success of two-toxin plants is that they kill insects selected for resistance to one toxin, which is called “redundant killing.” Here we tested this assumption for a major pest, Helicoverpa zea, on transgenic cotton producing Bt toxins Cry1Ac and Cry2Ab. Selection with Cry1Ac increased survival on two-toxin cotton, which contradicts the assumption. The concentration of Cry1Ac and Cry2Ab declined during the growing season, which would tend to exacerbate this problem. Furthermore, analysis of results from 21 selection experiments with eight species of lepidopteran pests indicates that some cross-resistance typically occurs between Cry1A and Cry2A toxins. Incorporation of empirical data into simulation models shows that the observed deviations from ideal conditions could greatly reduce the benefits of the pyramid strategy for pests like H. zea, which have inherently low susceptibility to Bt toxins and have been exposed extensively to one of the toxins in the pyramid before two-toxin plants are adopted. For such pests, the pyramid strategy could be improved by incorporating empirical data on deviations from ideal assumptions about redundant killing and cross-resistance.

Concepts: Bacillus, Lepidoptera, Bacillus thuringiensis, Endotoxin, Genetically modified food, Helicoverpa, Monsanto, Plant Genetic Systems

3

Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.

Concepts: Agriculture, China, Maize, Bacillus thuringiensis, Genetically modified organism, Genetically modified food, Genetic engineering, Monsanto

2

Genetically modified organisms (GMOs) have been available for commercial purchase since the 1990s, allowing producers to increase crop yields through bioengineering that creates herbicide-resistant and insect-resistant varieties. However, consumer knowledge about GMOs has not increased at the same rate as the adoption of GMO crops. Consumers worldwide are displaying limited understanding, misconceptions, and even unfamiliarity with GMO food products. Many consumers report that they receive information about GMO food products from the media, Internet, and other news sources. These sources may be less reliable than scientific experts whom consumers trust more to present the facts. Although many in the United States support mandatory GMO labeling (similar to current European standards), consumer awareness of current GMO labeling is low. A distinction must also be made between GMO familiarity and scientific understanding, because those who are more familiar with it tend to be more resistant to bioengineering, whereas those with higher scientific knowledge scores tend to have less negative attitudes toward GMOs. This brings to question the relation between scientific literacy, sources of information, and overall consumer knowledge and perception of GMO foods.

Concepts: Scientific method, Gene expression, Agriculture, Genetically modified organism, Genetically modified food, Genetically modified organisms, Monsanto, Golden rice

0

Background: Confirming the integrity of seed samples in powdered form is important priorto conducting a genetically modified organism (GMO) test. Rapid onsite methods may provide a technological solution to check for genetically modified (GM) events at ports of entry. In India, Bt cotton is the commercialized GM crop with four approved GM events; however, 59 GM events have been approved globally. GMO screening is required to test for authorized GM events. The identity and amplifiability of test samples could be ensured first by employing endogenous genes as an internal control. Objective: A rapid onsite detection method was developed for an endogenous reference gene, stearoyl acyl carrier protein desaturase (Sad1) of cotton, employing visual and real-time loop-mediated isothermal amplification (LAMP). Methods: The assays were performed at a constant temperature of 63°C for 30 min for visual LAMP and 62ºC for 40 min for real-time LAMP. Positive amplification was visualized as a change in color from orange to green on addition of SYBR® Green or detected as real-time amplification curves. Results: Specificity of LAMP assays was confirmed using a set of 10 samples. LOD for visual LAMP was up to 0.1%, detecting 40 target copies, and for real-time LAMP up to 0.05%, detecting 20 target copies. Conclusions: The developed methods could be utilized to confirm the integrity of seed powder prior to conducting a GMO test for specific GM events of cotton. Highlights: LAMP assays for the endogenous Sad1 gene of cotton have been developed to be used as an internal control for onsite GMO testing in cotton.

Concepts: DNA, Gene, Gene expression, Molecular biology, Horizontal gene transfer, Genetically modified organism, Genetically modified food, Monsanto

0

Genetically modified organisms have been at the centre of a major public controversy, involving different interests and actors. While much attention has been devoted to consumer views on genetically modified food, there have been few attempts to understand the perceptions of genetically modified technology among farmers. By investigating perceptions of genetically modified organisms among Brazilian farmers, we intend to contribute towards filling this gap and thereby add the views of this stakeholder group to the genetically modified debate. A comparative analysis of our data and data from other studies indicate there is a complex variety of views on genetically modified organisms among farmers. Despite this diversity, we found variations in such views occur within limited parameters, concerned principally with expectations or concrete experiences regarding the advantages of genetically modified crops, perceptions of risks associated with them, and ethical questions they raise. We then propose a classification of prevailing profiles to represent the spectrum of perceptions of genetically modified organisms among farmers.

Concepts: Maize, Genetically modified organism, Genetically modified food, Genetic engineering, Monsanto, Golden rice

0

In pests with inherently low susceptibility to Bacillus thuringiensis (Bt) toxins, seasonal declines in the concentration of Bt toxins in transgenic crops could accelerate evolution of resistance by increasing the dominance of resistance. Here, we evaluated Helicoverpa zea survival on young and old cotton plants that produced Cry1Ac + Cry1F or did not produce Bt toxins.

Concepts: Cotton, Bacillus, Bacillus thuringiensis, Endotoxin, Bacillus anthracis, Genetically modified food, Monsanto, Plant Genetic Systems

0

An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

Concepts: Cotton, Bacillus, Bacillus thuringiensis, Endotoxin, Genetically modified food, Helicoverpa armigera, Monsanto, Pink bollworm