SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Molecular motor

3

Biological molecular motors translate their local directional motion into ordered movement of other parts of the system to empower controlled mechanical functions. The design of analogous geared systems that couple motion in a directional manner, which is pivotal for molecular machinery operating at the nanoscale, remains highly challenging. Here, we report a molecular rotary motor that translates light-driven unidirectional rotary motion to controlled movement of a connected biaryl rotor. Achieving coupled motion of the distinct parts of this multicomponent mechanical system required precise control of multiple kinetic barriers for isomerization and synchronous motion, resulting in sliding and rotation during a full rotary cycle, with the motor always facing the same face of the rotor.

Concepts: DNA, Energy, Molecular motor, Motor, Electric motor, Engine, Molecular machine, Molecular propeller

3

Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

Concepts: DNA, Protein, Molecular biology, Atom, Actin, Molecular motor, Motor protein, Motor

3

Multimeric, ring-shaped molecular motors rely on the coordinated action of their subunits to perform crucial biological functions. During these tasks, motors often change their operation in response to regulatory signals. Here, we investigate a viral packaging machine as it fills the capsid with DNA and encounters increasing internal pressure. We find that the motor rotates the DNA during packaging and that the rotation per base pair increases with filling. This change accompanies a reduction in the motor’s step size. We propose that these adjustments preserve motor coordination by allowing one subunit to make periodic, specific, and regulatory contacts with the DNA. At high filling, we also observe the downregulation of the ATP-binding rate and the emergence of long-lived pauses, suggesting a throttling-down mechanism employed by the motor near the completion of packaging. This study illustrates how a biological motor adjusts its operation in response to changing conditions, while remaining highly coordinated.

Concepts: DNA, Gene, Genetics, Motor control, Motor coordination, Molecular motor, Protein subunit, Motor

2

The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the firstin vivointeractome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes.

Concepts: Protein, Mathematics, Eukaryote, Actin, Myosin, Cytoskeleton, Molecular motor, Motor protein

2

Single-molecule picometer resolution nanopore tweezers (SPRNT) is a new tool for analyzing the motion of nucleic acids through molecular motors. With SPRNT, individual enzymatic motions along DNA as small as 40 pm can be resolved on sub-millisecond time scales. Additionally, SPRNT reveals an enzyme’s exact location with respect to a DNA strand’s nucleotide sequence, enabling identification of sequence-specific behaviors. SPRNT is enabled by a mutant version of the biological nanopore formed by Mycobacterium smegmatis porin A (MspA). SPRNT is strongly rooted in nanopore sequencing and therefore requires a solid understanding of basic principles of nanopore sequencing. Furthermore, SPRNT shares tools developed for nanopore sequencing and extends them to analysis of single-molecule kinetics. As such, this review begins with a brief history of our work developing the nanopore MspA for nanopore sequencing. We then describe the underlying principles of SPRNT, how it works in detail, and propose some potential future uses. We present the methods that will enable others to use SPRNT and we close with a comparison of SPRNT to other techniques.

Concepts: DNA, Gene, Molecular biology, Adenosine triphosphate, RNA, Nucleic acid, Nucleotide, Molecular motor

2

BACKGROUND: Introduction of effective point-of-care devices for use in medical diagnostics is part of strategies to combat accelerating health-care costs. Molecular motor driven nanodevices have unique potentials in this regard due to unprecedented level of miniaturization and independence of external pumps. However motor function has been found to be inhibited by body fluids. RESULTS: We report here that a unique procedure, combining separation steps that rely on antibody-antigen interactions, magnetic forces applied to magnetic nanoparticles (MPs) and the specificity of the actomyosin bond, can circumvent the deleterious effects of body fluids (e.g. blood serum). The procedure encompasses the following steps: (i) capture of analyte molecules from serum by MP-antibody conjugates, (ii) pelleting of MP-antibody-analyte complexes, using a magnetic field, followed by exchange of serum for optimized biological buffer, (iii) mixing of MP-antibody-analyte complexes with actin filaments conjugated with same polyclonal antibodies as the magnetic nanoparticles. This causes complex formation: MP-antibody-analyte-antibody-actin, and magnetic separation is used to enrich the complexes. Finally (iv) the complexes are introduced into a nanodevice for specific binding via actin filaments to surface adsorbed molecular motors (heavy meromyosin). The number of actin filaments bound to the motors in the latter step was significantly increased above the control value if protein analyte (50–60 nM) was present in serum (in step i) suggesting appreciable formation and enrichment of the MP-antibody-analyte-antibody-actin complexes. Furthermore, addition of ATP demonstrated maintained heavy meromyosin driven propulsion of actin filaments showing that the serum induced inhibition was alleviated. Detailed analysis of the procedure i-iv, using fluorescence microscopy and spectroscopy identified main targets for future optimization. CONCLUSION: The results demonstrate a promising approach for capturing analytes from serum for subsequent motor driven separation/detection. Indeed, the observed increase in actin filament number, in itself, signals the presence of analyte at clinically relevant nM concentration without the need for further motor driven concentration. Our analysis suggests that exchange of polyclonal for monoclonal antibodies would be a critical improvement, opening for a first clinically useful molecular motor driven lab-on-a-chip device.

Concepts: DNA, Protein, Magnetic field, Blood, Magnetism, Actin, Molecular motor, Motor

2

The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

Concepts: DNA, Electron, Molecule, Chemistry, Atom, Molecular motor, Rotation, Motor

1

Reversible control over the functionality of biological systems via external triggers may be used in future medicine to reduce the need for invasive procedures. Additionally, externally regulated biomacromolecules are now considered as particularly attractive tools in nanoscience and the design of smart materials, due to their highly programmable nature and complex functionality. Incorporation of photoswitches into biomolecules, such as peptides, antibiotics and nucleic acids, has generated exciting results in the past few years. Molecular motors offer the potential for new and more precise methods of photoregulation, due to their multistate switching cycle, unidirectionality of rotation, and helicity inversion during the rotational steps. Aided by computational studies, we designed and synthesized a photoswitchable DNA hairpin, in which a molecular motor serves as the bridgehead unit. After determining that motor function was not affected by the rigid arms of the linker, solid phase synthesis was employed to incorporate the motor into an 8 base pair self-complimentary DNA strand. With the photoswitchable bridgehead in place, hairpin formation was unimpaired, while the motor part of this advanced biohybrid system retains excellent photochemical properties. Rotation of the motor generates large changes in structure, and as a consequence the duplex stability of the oligonucleotide could be regulated by UV light irradiation. Additionally, Molecular Dynamics computations were employed to rationalize the observed behavior of the motor-DNA hybrid. The results presented herein establish molecular motors as powerful multistate switches for application in biological environments.

Concepts: DNA, Gene, Genetics, Molecular biology, Base pair, Biochemistry, Molecular motor, Motor

1

A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature’s protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

Concepts: DNA, Muscle, Actin, Nanotechnology, Myosin, Molecular motor, Assembly language, Motor

1

Molecular motors embedded within collections of actin and microtubule filaments underlie the dynamics of cytoskeletal assemblies. Understanding the physics of such motor-filament materials is critical to developing a physical model of the cytoskeleton and designing biomimetic active materials. Here, we demonstrate through experiments and simulations that the rigidity and connectivity of filaments in active biopolymer networks regulates the anisotropy and the length scale of the underlying deformations, yielding materials with variable contractility. We find that semiflexible filaments can be compressed and bent by motor stresses, yielding materials that undergo predominantly biaxial deformations. By contrast, rigid filament bundles slide without bending under motor stress, yielding materials that undergo predominantly uniaxial deformations. Networks dominated by biaxial deformations are robustly contractile over a wide range of connectivities, while networks dominated by uniaxial deformations can be tuned from extensile to contractile through cross-linking. These results identify physical parameters that control the forces generated within motor-filament arrays and provide insight into the self-organization and mechanics of cytoskeletal assemblies.

Concepts: Eukaryote, Actin, Myosin, Cytoskeleton, Molecular motor, Microtubule, Motor, Deformation