Discover the most talked about and latest scientific content & concepts.

Concept: Molecular mass


The purpose of this study was to develop novel dissolving microneedle arrays fabricated from hyaluronic acid (HA) as a material and to improve the transdermal permeability of relatively high molecular weight drugs. In this study, fluorescein isothiocyanate-labeled dextran with an average molecular weight of 4 kDa (FD4) was used as a model drug with a relatively high molecular weight. The microneedle arrays significantly increased transepidermal water loss (TEWL) and reduced transcutaneous electrical resistance (TER), indicating that they could puncture the skin and create drug permeation pathways successfully. Both TEWL and TER almost recovered to baseline levels in the microneedle array group, and relatively small pathways created by the microneedles rapidly recovered as compared with those created by a tape stripping treatment. These findings confirmed that the microneedle arrays were quite safe. Furthermore, we found that the transdermal permeability of FD4 using the microneedle arrays was much higher than that of the FD4 solution. Furthermore, we found that the microneedle arrays were much more effective for increasing the amount of FD4 accumulated in the skin. These findings indicated that using novel microneedle arrays fabricated from HA is a very useful and effective strategy to improve the transdermal delivery of drugs, especially relatively high molecular weight drugs without seriously damaging the skin.

Concepts: Pharmacology, Molecule, Drug, Mass, Array, Atomic mass unit, Molecular mass


To study the preparation and separation of Konjac oligosaccharides, Konjac Glucomannan was degraded by the combination of γ-irradiation and β-mannanase, and then the degradation product was separated by ultrafiltration. To our interest, for most of Konjac oligosaccharides obtained by this method, the molecular mass was lower than 2200Da. In addition, the 1000Da molecular weight cut off membrane could effectively separate the Konjac oligosaccharides. In conclusion, the combination of γ-irradiation and β-mannanase was an efficient method to obtain Konjac oligosaccharides, and the oligosaccharides of molecular mass lower than 1000Da could be effectively separated by ultrafiltration.

Concepts: Molecule, Mass, Atomic mass unit, Molecular mass, Separation, Glucomannan, Konjac, Shirataki noodles


Lignin valorization practices have attracted a great deal of interest in recent years due to the large excess of lignin produced by the pulp and paper industry, together with second-generation bioethanol plants. In this work, a new lignin valorization approach is proposed. It involves ultrafiltration as a fractionation process to separate different molecular weight lignin fractions followed by a hydrogen-free, mild, hydrogenolytic, heterogeneously catalyzed methodology assisted by microwave irradiation to obtain simple phenolic, monomeric products by depolymerization using a nickel-based catalyst. The main products obtained were desaspidinol, syringaldehyde, and syringol; this proves the efficiency of the depolymerization conditions applied. The concentration of these observed compounds increased when the molecular weights of the lignin fractions increased. The applied depolymerization conditions, which take advantage of the use of formic acid as a hydrogen-donating solvent, did not generate any biochar in the systems.

Concepts: Oxygen, Acetic acid, Solvent, Vanillin, Molecular mass, Methanol, Formic acid, Pulp and paper industry


We previously reported that nanoparticles (NPs) coated with 10 kDa PEG were mucoadhesive. Here, we demonstrate that by increasing the surface density, PEG with molecular weight (MW) as high as 40 kDa can be used as a mucoinert NP surface coating.

Concepts: Molecule, Mass, In vivo, Coating, Atomic mass unit, Molecular mass, Charge density


Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 10(6) g.mol(-1)) compared to the native (Mw ~ 1.2 × 10(6) g.mol(-1)). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 10(6) g.mol(-1)), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution.

Concepts: Glucose, Vaccine, Mass, Polymer, Polysaccharide, Aspect ratio, Haemophilus influenzae, Molecular mass


To date, dozens of stress-induced cellular senescence phenotypes have been reported. These cellular senescence states may differ substantially from each other, as well as from replicative senescence through the presence of specific senescence features. Here, we attempted to catalog virtually all of the cellular senescence-like states that can be induced by low molecular weight compounds. We summarized biological markers, molecular pathways involved in senescence establishment, and specific traits of cellular senescence states induced by more than fifty small molecule compounds.

Concepts: Molecule, Radical, Gerontology, Chemical compound, Molecular mass, Biological immortality, Leonard Hayflick


In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation.

Concepts: Glucose, Chemical equilibrium, Polysaccharide, Carbohydrate, Disaccharide, Monosaccharide, Galactose, Molecular mass


The small molecule universe (SMU) is defined as a set of over 10^60 synthetically feasible organic molecules with molecular weight less than ~500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose discovering favorable structures is impossible. We take an stochastic approach and extend the ACSESS framework1 for developing diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical properties values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3×10^5 molecules.

Concepts: Evolution, Molecule, Chemistry, Atom, Chemical substance, Chemical compound, Genetic algorithm, Molecular mass


Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters.

Concepts: Oxygen, Molecule, Atom, Mass, Serum albumin, Bovine serum albumin, Atomic mass unit, Molecular mass


Focused ultrasound (FUS) in combination with microbubbles (MBs) has been successfully used in the delivery of various-size therapeutic agents across the blood-brain barrier (BBB). This study revealed that FUS-induced BBB opening size, defined by the size of the largest molecule that can permeate through the BBB, can be controlled by the acoustic pressure as dictated by cavitational mechanisms. Focused ultrasound was applied onto the mouse hippocampus in the presence of systemically administered MBs for trans-BBB delivery of fluorescently labeled dextrans with molecular weights 3 to 2,000 kDa (hydrodynamic diameter: 2.3 to 54.4 nm). The dextran delivery outcomes were evaluated using ex vivo fluorescence imaging. Cavitation detection was employed to monitor the MB cavitation activity associated with the delivery of these agents. It was found that the BBB opening size was smaller than 3 kDa (2.3 nm) at 0.31 MPa, up to 70 kDa (10.2 nm) at 0.51 MPa, and up to 2,000 kDa (54.4 nm) at 0.84 MPa. Relatively smaller opening size (up to 70 kDa) was achieved with stable cavitation only; however, inertial cavitation was associated with relatively larger BBB opening size (above 500 kDa). These findings indicate that the BBB opening size can be controlled by the acoustic pressure and predicted using cavitation detection.Journal of Cerebral Blood Flow & Metabolism advance online publication, 30 April 2014; doi:10.1038/jcbfm.2014.71.

Concepts: Molecule, Acoustics, Pressure, Sound pressure, Molecular mass, Sonar, Sonoluminescence, Cavitation