Discover the most talked about and latest scientific content & concepts.

Concept: Mitochondrial DNA


Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement.

Concepts: Human, Mitochondrial DNA, Species, Population, Race, World population, Demodex, Demodex folliculorum


Hominins with morphology similar to present-day humans appear in the fossil record across Eurasia between 40,000 and 50,000 y ago. The genetic relationships between these early modern humans and present-day human populations have not been established. We have extracted DNA from a 40,000-y-old anatomically modern human from Tianyuan Cave outside Beijing, China. Using a highly scalable hybridization enrichment strategy, we determined the DNA sequences of the mitochondrial genome, the entire nonrepetitive portion of chromosome 21 (∼30 Mbp), and over 3,000 polymorphic sites across the nuclear genome of this individual. The nuclear DNA sequences determined from this early modern human reveal that the Tianyuan individual derived from a population that was ancestral to many present-day Asians and Native Americans but postdated the divergence of Asians from Europeans. They also show that this individual carried proportions of DNA variants derived from archaic humans similar to present-day people in mainland Asia.

Concepts: DNA, Human, Mitochondrial DNA, Human evolution, Archaic Homo sapiens, Humans, Anatomically modern humans, Homo sapiens idaltu


Considering the recent experimental discovery of Green et al that present-day non-Africans have 1 to [Formula: see text] of their nuclear DNA of Neanderthal origin, we propose here a model which is able to quantify the genetic interbreeding between two subpopulations with equal fitness, living in the same geographic region. The model consists of a solvable system of deterministic ordinary differential equations containing as a stochastic ingredient a realization of the neutral Wright-Fisher process. By simulating the stochastic part of the model we are able to apply it to the interbreeding ofthe African ancestors of Eurasians and Middle Eastern Neanderthal subpopulations and estimate the only parameter of the model, which is the number of individuals per generation exchanged between subpopulations. Our results indicate that the amount of Neanderthal DNA in living non-Africans can be explained with maximum probability by the exchange of a single pair of individuals between the subpopulations at each 77 generations, but larger exchange frequencies are also allowed with sizeable probability. The results are compatible with a long coexistence time of 130,000 years, a total interbreeding population of order [Formula: see text] individuals, and with all living humans being descendants of Africans both for mitochondrial DNA and Y chromosome.

Concepts: DNA, Gene, Cell, Mathematics, Mitochondrial DNA, Chromosome, Differential equation, Neanderthal


For societies with writing systems, hereditary leadership is documented as one of the hallmarks of early political complexity and governance. In contrast, it is unknown whether hereditary succession played a role in the early formation of prehistoric complex societies that lacked writing. Here we use an archaeogenomic approach to identify an elite matriline that persisted between 800 and 1130 CE in Chaco Canyon, the centre of an expansive prehistoric complex society in the Southwestern United States. We show that nine individuals buried in an elite crypt at Pueblo Bonito, the largest structure in the canyon, have identical mitochondrial genomes. Analyses of nuclear genome data from six samples with the highest DNA preservation demonstrate mother-daughter and grandmother-grandson relationships, evidence for a multigenerational matrilineal descent group. Together, these results demonstrate the persistence of an elite matriline in Chaco for ∼330 years.

Concepts: DNA, Genome, Mitochondrial DNA, Kinship and descent, Kinship, Matrilineality, Patrilineality, Dynasty


We have previously shown increased cardiac stanniocalcin-1 (STC1) in patients with idiopathic dilated cardiomyopathy. STC1 localizes to the inner mitochondrial membrane and transgenic over-expression of STC1 is associated with increased energy utilization.

Concepts: Bacteria, Metabolism, Adenosine triphosphate, Mitochondrial DNA, Organelle, Muscle, Dilated cardiomyopathy, Crista


Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0)) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

Concepts: DNA, Genetics, Cancer, Mutation, Evolution, Mitochondrial DNA, DNA repair, DNA polymerase


BACKGROUND: POLG1 mutations have been associated to MELAS-like phenotypes. However given several clinical differences it is unknown whether POLG1 mutations are possible causes of MELAS or give raise to a distinct clinical and genetic entity, named POLG1-associated encephalopathy. CASE PRESENTATION: We describe a 74 years old man carrying POLG1 mutations presenting with strokes, myopathy and ragged red fibers with some atypical aspects for MELAS such as late onset, lack of cerebral calcification and presence of frontal and occipital MRI lesions better consistent with the POLG associated-encephalopathy spectrum. CONCLUSION: The lack of available data hampers a definite diagnosis in our patient as well as makes it difficult to compare MELAS, which is a clearly defined clinical syndrome, with POLG1-associated encephalopathy, which is so far a purely molecularly defined syndrome with a quite heterogeneous clinical picture. However, the present report contributes to expand the phenotypic spectrum of POLG1 mutations underlining the importance of searching POLG1 mutations in patients with mitochondrial signs and MELAS like phenotypes but negative for common mtDNA mutations.

Concepts: DNA, Gene, Natural selection, Evolution, Mitochondrial DNA, Mitochondrial diseases, MT-TH, MT-TL1


Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.

Concepts: DNA, Human, Human genome, Genome, Mitochondrion, Mitochondrial DNA, DNA sequencing, Nuclear DNA


A total of 444 individuals representing three ethnic groups (Albanians, Turks and Romanies) in the Republic of Macedonia were sequenced in the mitochondrial control region. The mtDNA haplogroup composition differed between the three groups. Our results showed relatively high frequencies of haplogroup H12 in Albanians (8.8%) and less in Turks (3.3%), while haplogroups M5a1 and H7a1a were dominant in Romanies (13.7% and 10.3%, respectively) but rare in the former two. This highlights the importance of regional sampling for forensic mtDNA databasing purposes. These population data will be available on EMPOP under accession numbers EMP00644 (Albanians), EMP00645 (Romanies) and EMP00646 (Turks).

Concepts: DNA, Mitochondrion, Mitochondrial DNA, Serbia, Greece, Mitochondrial Eve, Kosovo, Republic of Macedonia


Current strategies for preventing the transmission of mitochondrial disease to offspring include techniques known as mitochondrial replacement and mitochondrial gene editing. This technology has already been applied in humans on several occasions, and the first baby with donor mitochondria has already been born. However, these techniques raise several ethical concerns, among which is the fact that they entail genetic modification of the germline, as well as presenting safety problems in relation to a possible mismatch between the nuclear and mitochondrial DNA, maternal mitochondrial DNA carryover, and the “reversion” phenomenon. In this essay, we discuss these questions, highlighting the advantages of some techniques over others from an ethical point of view, and we conclude that none of these are ready to be safely applied in humans.

Concepts: DNA, Gene, Cell, Bacteria, Mitochondrion, Mitochondrial DNA, Ethics, Mitochondrial disease